An adaptive contextual quantum language model

User interactions in search system represent a rich source of implicit knowledge about the user’s cognitive state and information need that continuously evolves over time. Despite massive efforts that have been made to exploiting and incorporating this implicit knowledge in information retrieval, it is still a challenge to effectively capture the term dependencies and the user’s dynamic information need (reflected by query modifications) in the context of user interaction. To tackle these issues, motivated by the recent Quantum Language Model (QLM), we develop a QLM based retrieval model for session search, which naturally incorporates the complex term dependencies occurring in user’s historical queries and clicked documents with density matrices. In order to capture the dynamic information within users’ search session, we propose a density matrix transformation framework and further develop an adaptive QLM ranking model. Extensive comparative experiments show the effectiveness of our session quantum language models.

[1]  Paul-Alexandru Chirita,et al.  Personalized query expansion for the web , 2007, SIGIR.

[2]  Anne-Marie Kermarrec,et al.  Toward personalized query expansion , 2009, SNS '09.

[3]  Grace Hui Yang,et al.  Query change as relevance feedback in session search , 2013, SIGIR.

[4]  Grace Hui Yang,et al.  Utilizing query change for session search , 2013, SIGIR.

[5]  Wei Chu,et al.  Modeling the impact of short- and long-term behavior on search personalization , 2012, SIGIR '12.

[6]  Ji-Rong Wen,et al.  Personalizing Web Search Results Based on Subspace Projection , 2014, AIRS.

[7]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[8]  Tomáš Kramár,et al.  Detecting Search Sessions Using Document Metadata and Implicit Feedback , 2012 .

[9]  Fabio Crestani,et al.  Building user profiles from topic models for personalised search , 2013, CIKM.

[10]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[11]  ChengXiang Zhai,et al.  Mining long-term search history to improve search accuracy , 2006, KDD '06.

[12]  Dawei Song,et al.  Improving search personalisation with dynamic group formation , 2014, SIGIR.

[13]  Daniel Gayo-Avello,et al.  A survey on session detection methods in query logs and a proposal for future evaluation , 2009, Inf. Sci..

[14]  Jun Wang,et al.  Bias-variance decomposition of ir evaluation , 2013, SIGIR.

[15]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[16]  Guido Zuccon,et al.  Using the Quantum Probability Ranking Principle to Rank Interdependent Documents , 2010, ECIR.

[17]  Manfred K. Warmuth,et al.  Bayesian generalized probability calculus for density matrices , 2009, Machine Learning.

[18]  C. J. van Rijsbergen,et al.  What can quantum theory bring to information retrieval , 2010, CIKM.

[19]  Ryen W. White,et al.  Utilizing a geometry of context for enhanced implicit feedback , 2007, CIKM '07.

[20]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[21]  Dawei Song,et al.  Modeling Quantum Entanglements in Quantum Language Models , 2015, IJCAI.

[22]  Yoshua Bengio,et al.  Modeling term dependencies with quantum language models for IR , 2013, SIGIR.

[23]  Giorgos Stamou,et al.  Context-sensitive semantic query expansion , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[24]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[25]  Yoshua Bengio,et al.  Learning Concept Embeddings for Query Expansion by Quantum Entropy Minimization , 2014, AAAI.

[26]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[27]  Dawei Song,et al.  A Novel Re-ranking Approach Inspired by Quantum Measurement , 2011, ECIR.

[28]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[29]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[30]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[31]  Dawei Song,et al.  Modeling Multi-query Retrieval Tasks Using Density Matrix Transformation , 2015, SIGIR.

[32]  Daqing He,et al.  Detecting session boundaries from Web user logs , 2000 .

[33]  Dawei Song,et al.  Investigating Query-Drift Problem from a Novel Perspective of Photon Polarization , 2011, ICTIR.

[34]  John D. Lafferty,et al.  Document Language Models, Query Models, and Risk Minimization for Information Retrieval , 2001, SIGIR Forum.