An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs
暂无分享,去创建一个
[1] John Robert Whiteman,et al. The mathematics of finite elements and applications : highlights 1993 , 1994 .
[2] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[3] P. Ronney. Near-limit flame structures at low Lewis number , 1990 .
[4] Yves Meyer,et al. Progress in wavelet analysis and applications , 1993 .
[5] Jianzhong Wang,et al. Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs , 1996 .
[6] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[7] P. Lemarié-Rieusset. Fonctions à support compact dans les analyses multi-résoIutions , 1991 .
[8] Gilles Deslauriers,et al. Symmetric Iterative Interpolation Processes , 1989 .
[9] I. J. Schoenberg,et al. Cardinal interpolation and spline functions , 1969 .
[10] W. Sweldens,et al. Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .
[11] I. Weinreich,et al. Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .
[12] S. Mallat,et al. A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .
[13] G. S. S. Ludford,et al. Theory of Laminar Flames , 1982 .
[14] Stanley Osher,et al. Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..
[15] J. Whiteman. The Mathematics of Finite Elements and Applications. , 1983 .
[16] Samuel Paolucci,et al. A multilevel wavelet collocation method for solving partial differential equations in a finite domain , 1995 .
[17] Francesc Aràndiga,et al. Fast Multiresolution Algorithms for Solving Linear Equations: A Comparative Study , 1995, SIAM J. Sci. Comput..
[18] Wim Sweldens,et al. An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..
[19] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[20] Yves Meyer,et al. Wavelets and Applications , 1992 .
[21] Philippe Charton,et al. Produits rapides matrice-vecteur en bases d'ondelettes : application à la résolution numérique d'équations aux dérivés partielles , 1995 .
[22] Tom Lyche,et al. Mathematical methods in computer aided geometric design , 1989 .
[23] W. Dahmen,et al. Multilevel preconditioning , 1992 .
[24] S. Jaffard. Wavelet methods for fast resolution of elliptic problems , 1992 .
[25] P. Haldenwang,et al. Numerical Study of Thermal-Diffusive Instability of Premixed Flames , 1992 .
[26] Gilbert G. Walter,et al. A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.
[27] S. Bertoluzza,et al. A Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations , 1996 .
[28] P. Tchamitchian. Biorthogonalité et Théorie des Opérateurs , 1987 .
[29] Sam Qian,et al. Wavelets and the Numerical Solution of Partial Differential Equations , 1993 .
[30] G. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .
[31] Frédérique Plantevin,et al. Wavelets on irregular meshes , 1995, Advances in Computational Mathematics.
[32] A. Harten. Multiresolution representation of data: a general framework , 1996 .