An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs

The paper first describes a fast algorithm for the discrete orthonormal wavelet transform and its inverse without using the scaling function. This approach permits to compute the decomposition of a function into a lacunary wavelet basis, i.e., a basis constituted of a subset of all basis functions up to a certain scale, without modification. The construction is then extended to operator-adapted biorthogonal wavelets. This is relevant for the solution of certain nonlinear evolutionary PDEs where a priori information about the significant coefficients is available. We pursue the approach described in (J. Frohlich and K. Schneider,Europ. J. Mech. B/Fluids13,439, 1994) which is based on the explicit computation of the scalewise contributions of the approximated function to the values at points of hierarchical grids. Here, we present an improved construction employing the cardinal function of the multiresolution. The new method is applied to the Helmholtz equation and illustrated by comparative numerical results. It is then extended for the solution of a nonlinear parabolic PDE with semi-implicit discretization in time and self-adaptive wavelet discretization in space. Results with full adaptivity of the spatial wavelet discretization are presented for a one-dimensional flame front as well as for a two-dimensional problem.

[1]  John Robert Whiteman,et al.  The mathematics of finite elements and applications : highlights 1993 , 1994 .

[2]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[3]  P. Ronney Near-limit flame structures at low Lewis number , 1990 .

[4]  Yves Meyer,et al.  Progress in wavelet analysis and applications , 1993 .

[5]  Jianzhong Wang,et al.  Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs , 1996 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  P. Lemarié-Rieusset Fonctions à support compact dans les analyses multi-résoIutions , 1991 .

[8]  Gilles Deslauriers,et al.  Symmetric Iterative Interpolation Processes , 1989 .

[9]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions , 1969 .

[10]  W. Sweldens,et al.  Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .

[11]  I. Weinreich,et al.  Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .

[12]  S. Mallat,et al.  A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .

[13]  G. S. S. Ludford,et al.  Theory of Laminar Flames , 1982 .

[14]  Stanley Osher,et al.  Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..

[15]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[16]  Samuel Paolucci,et al.  A multilevel wavelet collocation method for solving partial differential equations in a finite domain , 1995 .

[17]  Francesc Aràndiga,et al.  Fast Multiresolution Algorithms for Solving Linear Equations: A Comparative Study , 1995, SIAM J. Sci. Comput..

[18]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[19]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[20]  Yves Meyer,et al.  Wavelets and Applications , 1992 .

[21]  Philippe Charton,et al.  Produits rapides matrice-vecteur en bases d'ondelettes : application à la résolution numérique d'équations aux dérivés partielles , 1995 .

[22]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design , 1989 .

[23]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[24]  S. Jaffard Wavelet methods for fast resolution of elliptic problems , 1992 .

[25]  P. Haldenwang,et al.  Numerical Study of Thermal-Diffusive Instability of Premixed Flames , 1992 .

[26]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[27]  S. Bertoluzza,et al.  A Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations , 1996 .

[28]  P. Tchamitchian Biorthogonalité et Théorie des Opérateurs , 1987 .

[29]  Sam Qian,et al.  Wavelets and the Numerical Solution of Partial Differential Equations , 1993 .

[30]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[31]  Frédérique Plantevin,et al.  Wavelets on irregular meshes , 1995, Advances in Computational Mathematics.

[32]  A. Harten Multiresolution representation of data: a general framework , 1996 .