On the quality of the hardness kernel and the Fukui function to evaluate the global hardness
暂无分享,去创建一个
Paul Geerlings | Pedro Salvador | Miquel Solà | Miquel Torrent-Sucarrat | P. Geerlings | P. Salvador | M. Solà | M. Torrent‐Sucarrat
[1] Ralph G. Pearson,et al. Recent advances in the concept of hard and soft acids and bases , 1987 .
[2] P. Ayers. An elementary derivation of the hard/soft-acid/base principle. , 2005, The Journal of chemical physics.
[3] R. Parr,et al. Aspects of the Softness and Hardness Concepts of Density‐Functional Theory , 1991 .
[4] P. Geerlings,et al. Acidity of alkyl substituted alcohols: Are alkyl groups electron-donating or electron-withdrawing? , 1995 .
[5] P. Geerlings,et al. Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds , 1998 .
[6] C. Weizsäcker. Zur Theorie der Kernmassen , 1935 .
[7] T. Ohwada,et al. Theoretical revisit of regioselectivities of diels-alder reactions: orbital-based reevaluation of multicentered reactivity in terms of reactive hybrid orbitals. , 2005, The journal of physical chemistry. A.
[8] Á. Nagy,et al. Applications to atoms, ions, and molecules of a novel form of the correlation energy density functional , 1996 .
[9] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.
[10] Robert G. Parr,et al. Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .
[11] Density-functional theory-based chemical reactivity indices in the Hartree-Fock method. I. Unrestricted Hartree-Fock method for a noninteger number of electrons. , 2005, The Journal of chemical physics.
[12] J. Pople,et al. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .
[13] Hasse Fredriksson,et al. Theory of Atoms and Molecules , 2008 .
[14] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .
[15] Henry Chermette,et al. Chemical reactivity indexes in density functional theory , 1999 .
[16] P. Geerlings,et al. Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). , 2005, The journal of physical chemistry. A.
[17] P. Dirac. Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] A. Becke. A multicenter numerical integration scheme for polyatomic molecules , 1988 .
[19] R. Parr,et al. Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom , 1995 .
[20] P. Fuentealba. A local model for the hardness kernel and related reactivity parameters in density functional theory , 1995 .
[21] P. Fuentealba. Reactivity indices and response functions in density functional theory 1 Dedicated to Professor Yves , 1998 .
[22] P. Ayers. Strategies for computing chemical reactivity indices , 2001 .
[23] R. Pearson. Maximum Chemical and Physical Hardness , 1999 .
[24] Swapan K. Ghosh,et al. Simple Density Functional Approach to Polarizability, Hardness, and Covalent Radius of Atomic Systems , 1994 .
[25] P. Geerlings,et al. DFT-based chemical reactivity indices in the Hartree-Fock method. II. Fukui function, chemical potential, and hardness. , 2005, The Journal of chemical physics.
[26] E. Wigner. On the Interaction of Electrons in Metals , 1934 .
[27] R. T. Sanderson. Partial Charges on Atoms in Organic Compounds. , 1955, Science.
[28] R. Parr,et al. Principle of maximum hardness , 1991 .
[29] Parr,et al. Expansions of the correlation-energy density functional Ec , 1996, Physical review. A, Atomic, molecular, and optical physics.
[30] P. Ayers,et al. Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” , 2000 .
[31] Jordi Mestres,et al. A comparative analysis by means of quantum molecular similarity measures of density distributions derived from conventional ab initio and density functional methods , 1996 .
[32] P. Schleyer,et al. An ab initio study resulting in a greater understanding of the HSAB principle , 1994 .
[33] Some properties of the Lagrange multiplier μ in density functional theory , 1982 .
[34] P. Geerlings,et al. Conceptual density functional theory. , 2003, Chemical reviews.
[35] R. Parr,et al. Simplified Models for Hardness Kernel and Calculations of Global Hardness , 1997 .
[36] R. C. Morrison,et al. Fermi-Amaldi model for exchange-correlation: atomic excitation energies from orbital energy differences , 2005 .
[37] Alejandro Toro-Labbé,et al. New dual descriptor for chemical reactivity. , 2005, The journal of physical chemistry. A.
[38] T. Koopmans,et al. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .
[39] R. Parr,et al. Absolute hardness: companion parameter to absolute electronegativity , 1983 .
[40] Wolfram Koch,et al. A Chemist's Guide to Density Functional Theory , 2000 .
[41] Ralph G. Pearson,et al. Chemical Hardness: PEARSON:CHEM.HARDNESS O-BK , 1997 .
[42] P. Fuentealba,et al. A proposal for a new local hardness as selectivity index , 2004 .
[43] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.
[44] Ralph G. Pearson,et al. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry , 1988 .
[45] Robert G. Parr,et al. Density Functional Theory of Electronic Structure , 1996 .
[46] John C. Slater,et al. Atomic Radii in Crystals , 1964 .
[47] Robert G. Parr,et al. Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited , 2000 .
[48] M. Berkowitz,et al. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities , 1988 .
[49] N. Balazs. Formation of Stable Molecules within the Statistical Theory of Atoms , 1967 .
[50] M. Berkowitz,et al. A classical fluid‐like approach to the density‐functional formalism of many‐electron systems , 1985 .
[51] P. Fuentealba,et al. Scrutiny of the HSAB principle in some representative acid-base reactions , 2001 .
[52] P. Chattaraj,et al. Popular Electronic Structure Principles in a Dynamical Context , 1996 .
[53] Ranbir Singh,et al. J. Mol. Struct. (Theochem) , 1996 .
[54] M. Blomberg,et al. The ground-state potential curve for F2 , 1981 .
[55] R. Parr,et al. Density-functional theory of the electronic structure of molecules. , 1995, Annual review of physical chemistry.
[56] P. Geerlings,et al. DEVELOPMENT OF LOCAL HARDNESS RELATED REACTIVITY INDICES : THEIR APPLICATION IN A STUDY OF THE SE AT MONOSUBSTITUTED BENZENES WITHIN THE HSAB CONTEXT , 1995 .
[57] P. Geerlings,et al. Ab initio determination of substituent constants in a density functional theory formalism: calculation of intrinsic group electronegativity, hardness, and softness , 1993 .
[58] R. Parr. Density-functional theory of atoms and molecules , 1989 .
[59] R. Parr,et al. Electronegativity: The density functional viewpoint , 1978 .
[60] P. Salvador,et al. Energy partitioning for "fuzzy" atoms. , 2004, The Journal of chemical physics.
[61] R. T. Sanderson,et al. An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.
[62] M. Solà,et al. An assessment of a simple hardness kernel approximation for the calculation of the global hardness in a series of Lewis acids and bases , 2005 .
[63] P. Chattaraj,et al. Hardness dynamics in a chemical reaction , 1994 .
[64] A. Becke. Density-functional thermochemistry. III. The role of exact exchange , 1993 .
[65] M. Solà,et al. Global hardness evaluation using simplified models for the hardness kernel , 2002 .
[66] F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities , 1977 .
[67] F. De Proft,et al. Computation of the hardness and the problem of negative electron affinities in density functional theory. , 2005, The journal of physical chemistry. A.
[68] E. Lieb,et al. The Thomas-Fermi theory of atoms, molecules and solids , 1977 .
[69] Robert G. Parr,et al. New measures of aromaticity: absolute hardness and relative hardness , 1989 .
[70] H. Chermette,et al. Reactivity Indices in Density Functional Theory: A New Evaluation of the Condensed Fukui Function by Numerical Integration , 1998 .
[71] J. Perdew,et al. Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .
[72] E. Lieb,et al. Thomas-Fermi Theory Revisited , 1973 .
[73] B. Roos,et al. MCSCF–CI calculations of the ground state potential curves of LiH, Li2, and F2 , 1981 .
[74] M. Berkowitz,et al. On the concept of local hardness in chemistry , 1985 .
[75] R. Parr,et al. Variational method for determining the Fukui function and chemical hardness of an electronic system , 1995 .
[76] G. Goode,et al. Negative ions and the magnetron , 1969 .
[77] P. Senet. CHEMICAL HARDNESSES OF ATOMS AND MOLECULES FROM FRONTIER ORBITALS , 1997 .