On the quality of the hardness kernel and the Fukui function to evaluate the global hardness

An approximated hardness kernel, which includes the second derivative with respect to the density of the kinetic energy, the electron–electron coulomb repulsion, and the exchange density functionals, has been tested for the calculation of the global hardness. The results obtained for a series of 40 cations and neutral systems and 16 anions represent in most cases an improvement of the results obtained using the HOMO‐LUMO gap approach and indicate the viability of this approach to evaluate global hardness. In addition, the relevance of the Fukui function approximation and the role of the three components of the hardness kernel in the evaluation of the global hardness have been analyzed. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 574–583, 2007

[1]  Ralph G. Pearson,et al.  Recent advances in the concept of hard and soft acids and bases , 1987 .

[2]  P. Ayers An elementary derivation of the hard/soft-acid/base principle. , 2005, The Journal of chemical physics.

[3]  R. Parr,et al.  Aspects of the Softness and Hardness Concepts of Density‐Functional Theory , 1991 .

[4]  P. Geerlings,et al.  Acidity of alkyl substituted alcohols: Are alkyl groups electron-donating or electron-withdrawing? , 1995 .

[5]  P. Geerlings,et al.  Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds , 1998 .

[6]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[7]  T. Ohwada,et al.  Theoretical revisit of regioselectivities of diels-alder reactions: orbital-based reevaluation of multicentered reactivity in terms of reactive hybrid orbitals. , 2005, The journal of physical chemistry. A.

[8]  Á. Nagy,et al.  Applications to atoms, ions, and molecules of a novel form of the correlation energy density functional , 1996 .

[9]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[10]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[11]  Density-functional theory-based chemical reactivity indices in the Hartree-Fock method. I. Unrestricted Hartree-Fock method for a noninteger number of electrons. , 2005, The Journal of chemical physics.

[12]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[13]  Hasse Fredriksson,et al.  Theory of Atoms and Molecules , 2008 .

[14]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .

[15]  Henry Chermette,et al.  Chemical reactivity indexes in density functional theory , 1999 .

[16]  P. Geerlings,et al.  Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). , 2005, The journal of physical chemistry. A.

[17]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[19]  R. Parr,et al.  Fukui function from a gradient expansion formula, and estimate of hardness and covalent radius for an atom , 1995 .

[20]  P. Fuentealba A local model for the hardness kernel and related reactivity parameters in density functional theory , 1995 .

[21]  P. Fuentealba Reactivity indices and response functions in density functional theory 1 Dedicated to Professor Yves , 1998 .

[22]  P. Ayers Strategies for computing chemical reactivity indices , 2001 .

[23]  R. Pearson Maximum Chemical and Physical Hardness , 1999 .

[24]  Swapan K. Ghosh,et al.  Simple Density Functional Approach to Polarizability, Hardness, and Covalent Radius of Atomic Systems , 1994 .

[25]  P. Geerlings,et al.  DFT-based chemical reactivity indices in the Hartree-Fock method. II. Fukui function, chemical potential, and hardness. , 2005, The Journal of chemical physics.

[26]  E. Wigner On the Interaction of Electrons in Metals , 1934 .

[27]  R. T. Sanderson Partial Charges on Atoms in Organic Compounds. , 1955, Science.

[28]  R. Parr,et al.  Principle of maximum hardness , 1991 .

[29]  Parr,et al.  Expansions of the correlation-energy density functional Ec , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  P. Ayers,et al.  Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” , 2000 .

[31]  Jordi Mestres,et al.  A comparative analysis by means of quantum molecular similarity measures of density distributions derived from conventional ab initio and density functional methods , 1996 .

[32]  P. Schleyer,et al.  An ab initio study resulting in a greater understanding of the HSAB principle , 1994 .

[33]  Some properties of the Lagrange multiplier μ in density functional theory , 1982 .

[34]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[35]  R. Parr,et al.  Simplified Models for Hardness Kernel and Calculations of Global Hardness , 1997 .

[36]  R. C. Morrison,et al.  Fermi-Amaldi model for exchange-correlation: atomic excitation energies from orbital energy differences , 2005 .

[37]  Alejandro Toro-Labbé,et al.  New dual descriptor for chemical reactivity. , 2005, The journal of physical chemistry. A.

[38]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[39]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[40]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[41]  Ralph G. Pearson,et al.  Chemical Hardness: PEARSON:CHEM.HARDNESS O-BK , 1997 .

[42]  P. Fuentealba,et al.  A proposal for a new local hardness as selectivity index , 2004 .

[43]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  Ralph G. Pearson,et al.  Absolute Electronegativity and Hardness: Application to Inorganic Chemistry , 1988 .

[45]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[46]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[47]  Robert G. Parr,et al.  Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited , 2000 .

[48]  M. Berkowitz,et al.  Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities , 1988 .

[49]  N. Balazs Formation of Stable Molecules within the Statistical Theory of Atoms , 1967 .

[50]  M. Berkowitz,et al.  A classical fluid‐like approach to the density‐functional formalism of many‐electron systems , 1985 .

[51]  P. Fuentealba,et al.  Scrutiny of the HSAB principle in some representative acid-base reactions , 2001 .

[52]  P. Chattaraj,et al.  Popular Electronic Structure Principles in a Dynamical Context , 1996 .

[53]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[54]  M. Blomberg,et al.  The ground-state potential curve for F2 , 1981 .

[55]  R. Parr,et al.  Density-functional theory of the electronic structure of molecules. , 1995, Annual review of physical chemistry.

[56]  P. Geerlings,et al.  DEVELOPMENT OF LOCAL HARDNESS RELATED REACTIVITY INDICES : THEIR APPLICATION IN A STUDY OF THE SE AT MONOSUBSTITUTED BENZENES WITHIN THE HSAB CONTEXT , 1995 .

[57]  P. Geerlings,et al.  Ab initio determination of substituent constants in a density functional theory formalism: calculation of intrinsic group electronegativity, hardness, and softness , 1993 .

[58]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[59]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[60]  P. Salvador,et al.  Energy partitioning for "fuzzy" atoms. , 2004, The Journal of chemical physics.

[61]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.

[62]  M. Solà,et al.  An assessment of a simple hardness kernel approximation for the calculation of the global hardness in a series of Lewis acids and bases , 2005 .

[63]  P. Chattaraj,et al.  Hardness dynamics in a chemical reaction , 1994 .

[64]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[65]  M. Solà,et al.  Global hardness evaluation using simplified models for the hardness kernel , 2002 .

[66]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[67]  F. De Proft,et al.  Computation of the hardness and the problem of negative electron affinities in density functional theory. , 2005, The journal of physical chemistry. A.

[68]  E. Lieb,et al.  The Thomas-Fermi theory of atoms, molecules and solids , 1977 .

[69]  Robert G. Parr,et al.  New measures of aromaticity: absolute hardness and relative hardness , 1989 .

[70]  H. Chermette,et al.  Reactivity Indices in Density Functional Theory: A New Evaluation of the Condensed Fukui Function by Numerical Integration , 1998 .

[71]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[72]  E. Lieb,et al.  Thomas-Fermi Theory Revisited , 1973 .

[73]  B. Roos,et al.  MCSCF–CI calculations of the ground state potential curves of LiH, Li2, and F2 , 1981 .

[74]  M. Berkowitz,et al.  On the concept of local hardness in chemistry , 1985 .

[75]  R. Parr,et al.  Variational method for determining the Fukui function and chemical hardness of an electronic system , 1995 .

[76]  G. Goode,et al.  Negative ions and the magnetron , 1969 .

[77]  P. Senet CHEMICAL HARDNESSES OF ATOMS AND MOLECULES FROM FRONTIER ORBITALS , 1997 .