Robust Preconditioners for Saddle Point Problems

We survey preconditioning methods for matrices on saddle point form, as typically arising in constrained optimization problems. Special consideration is given to indefinite matrix preconditioners and a preconditioner which results in a symmetric positive definite matrix, which latter may enable the use of the standard conjugate gradient (CG) method. These methods result in eigenvalues with positive real parts and small or zero imaginary parts. The behaviour of some of these techniques is illustrated on solving a regularized Stokes problem.

[1]  Owe Axelsson,et al.  Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..

[2]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[3]  P. Vassilevski,et al.  Preconditioning indefinite systems arising from mixed finite element discretization of second-order elliptic problems , 1991 .

[4]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[5]  Owe Axelsson,et al.  An iterative solver for a mixed variable variational formulation of the (first) biharmonic problem , 1979 .

[6]  Owe Axelsson,et al.  On a generalized conjugate gradient orthogonal residual method , 1995, Numer. Linear Algebra Appl..

[7]  O. Axelsson Iterative solution methods , 1995 .

[8]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[9]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[10]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[11]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[12]  O. Axelsson Preconditioning of Indefinite Problems by Regularization , 1979 .

[13]  O. Axelsson Solving the Stokes problem on a massively parallel computer , 1999 .

[14]  Owe Axelsson,et al.  AN EFFICIENT FINITE ELEMENT METHOD FOR NONLINEAR DIFFUSION PROBLEMS , 1993 .

[15]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..