Absolute spectroscopic factors from neutron knockout on the halo nucleus C-15

An accurate determination of the partial cross sections to four final states in the $^{9}\mathrm{Be}(^{15}\mathrm{C},^{14}\mathrm{C})X$ reaction has been carried out at $103\phantom{\rule{0.3em}{0ex}}\mathrm{MeV}∕\text{nucleon}$. The cross section of $101(5)\phantom{\rule{0.3em}{0ex}}\text{mb}$ to the $^{14}\mathrm{C}\phantom{\rule{0.3em}{0ex}}{0}^{+}$ ground state is of special interest. Relative to the theoretical cross section calculated on the basis of the spectroscopic factor from effective-interaction theory, this amounts to a quenching factor ${R}_{s}=0.90(4)(5)$. Here the first number in parentheses is the experimental error, and the second is the error on the theoretical unit (reaction) cross section. The result gives support to the idea that weakly bound halolike states have quenching factors that approach unity, in contrast to factors of $0.5--0.6$ characteristic of well-bound states in nuclei near stability.

[1]  P. Hansen,et al.  DIRECT REACTIONS WITH EXOTIC NUCLEI , 2003 .

[2]  B. A. Brown,et al.  Spectroscopic factors measured in inclusive proton-knockout reactions on 8 B and 9 C at intermediate energies , 2003 .

[3]  J. Yurkon,et al.  The S800 spectrograph , 2003 .

[4]  A. Stolz,et al.  Commissioning the A1900 projectile fragment separator , 2003 .

[5]  B. A. Brown,et al.  Nuclear charge densities with the Skyrme Hartree-Fock method , 2003 .

[6]  B. A. Brown,et al.  Single-neutron removal reactions from C-15 and Be-11: Deviations from the eikonal approximation , 2002 .

[7]  B. A. Brown,et al.  Absolute spectroscopic factors from nuclear knockout reactions , 2002 .

[8]  B. A. Brown,et al.  Interaction cross sections for light neutron-rich nuclei. , 2001 .

[9]  P. Hansen,et al.  Reactions and single-particle structure of nuclei near the drip lines , 2001 .

[10]  I. Tanihata,et al.  Nuclear size and related topics , 2001 .

[11]  J. Tostevin Single-nucleon knockout reactions at fragmentation beam energies , 2001 .

[12]  B. A. Brown,et al.  Single-neutron knockout reactions: Application to the spectroscopy of 16,17,19 C , 2001 .

[13]  H. Blok,et al.  A consistent analysis of (e,e'p) and (d,3He) experiments. , 2000, nucl-ex/0007014.

[14]  E. Sauvan,et al.  One-neutron removal reactions on neutron-rich psd-shell nuclei , 2000, nucl-ex/0007013.

[15]  B. A. Brown,et al.  Displacement energies with the Skyrme Hartree–Fock method , 2000 .

[16]  R. Wiringa,et al.  Nuclear Structure Studies with the 7 Li\(e, e'p\) Reaction , 1999, nucl-th/9904008.

[17]  J. Tostevin Core excitation in halo nucleus break-up , 1999 .

[18]  T. Glasmacher,et al.  A position sensitive high-efficiency NaI(Tl) photon-detection system for use with intermediate energy radioactive ion beams , 1999 .

[19]  B. A. Brown,et al.  New Skyrme interaction for normal and exotic nuclei , 1998 .

[20]  V. Pandharipande,et al.  Independent particle motion and correlations in fermion systems , 1997 .

[21]  Baur,et al.  Coulomb dissociation of 8B into 7Be+p: Effects of multiphoton exchange. , 1994, Physical review. C, Nuclear physics.

[22]  Brown,et al.  Effective interactions for the 0p1s0d nuclear shell-model space. , 1992, Physical review. C, Nuclear physics.

[23]  B. Sherrill,et al.  Initial operating experience with the A1200 fragment separator , 1992 .

[24]  F. Ajzenberg‐Selove Energy levels of light nuclei A = 13-15 , 1991 .

[25]  C. Vries,et al.  Nuclear charge-density-distribution parameters from elastic electron scattering , 1987 .

[26]  T. Forest,et al.  Center-of-mass effects in single-nucleon knock-out reactions , 1974 .