A modification of the classic conditions of Newton-Kantorovich for Newton's method

Abstract We study the semilocal convergence of Newton’s method in Banach spaces under a modification of the classic conditions of Kantorovich, which leads to a generalization of Kantorovich’s theory. We illustrate this study with two Hammerstein integral equations of the second kind, where the classic conditions of Kantorovich cannot be applied, but our modification of them can.

[1]  A. Ostrowski Solution of equations in Euclidean and Banach spaces , 1973 .

[2]  José Antonio Ezquerro,et al.  Generalized differentiability conditions for Newton's method , 2002 .

[3]  Ioannis K. Argyros On the Convergence of Newton’s Method for Polynomial Equations and Applications in Radiative Transfer , 1999 .

[4]  C. Corduneanu,et al.  Integral equations and applications , 1991 .

[5]  Kishin B. Sadarangani,et al.  On solutions of a quadratic integral equation of Hammerstein type , 2006, Math. Comput. Model..

[6]  Kendall E. Atkinson,et al.  The numerical solution of a non-linear boundary integral equation on smooth surfaces , 1994 .

[7]  Francesca Faraci,et al.  Solutions of Hammerstein Integral Equations via a Variational Principle , 2003 .

[8]  Miguel Ángel Hernández,et al.  Majorizing sequences for Newton's method from initial value problems , 2012, J. Comput. Appl. Math..

[9]  K. Deimling Nonlinear functional analysis , 1985 .

[10]  Sergio Amat,et al.  Third-order iterative methods with applications to Hammerstein equations: A unified approach , 2011, J. Comput. Appl. Math..

[11]  I. B. Russak,et al.  Manifolds , 2019, Spacetime and Geometry.

[12]  José M. Gutiérrez,et al.  A new semilocal convergence theorem for Newton's method , 1997 .

[13]  Ioannis K. Argyros,et al.  Quadratic equations and applications to Chandrasekhar's and related equations , 1985, Bulletin of the Australian Mathematical Society.

[14]  Ioannis K. Argyros,et al.  Polynomial Operator Equations in Abstract Spaces and Applications , 1998 .

[15]  Shouchuan Hu,et al.  Integral equations arising in the kinetic theory of gases , 1989 .

[16]  J. E. Bailey,et al.  Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state , 1977 .

[17]  Mahadevan Ganesh,et al.  Numerical Solvability of Hammerstein Integral Equations of Mixed Type , 1991 .

[18]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[19]  José Antonio Ezquerro,et al.  Halley's method for operators with unbounded second derivative , 2007 .

[20]  Jalil Rashidinia,et al.  New approach for numerical solution of Hammerstein integral equations , 2007, Appl. Math. Comput..