A Time-Domain Least Squares Approach to Electrochemical Impedance Spectroscopy

This paper presents a time-domain method for electrochemical impedance spectroscopy (EIS) analysis using ordinary least squares (OLS). In this approach, an electrochemical device, e.g., fuel cell or battery, is perturbed galvanostatically by a small-signal sinusoid that is logarithmically swept in frequency. Using four-terminal sensing, voltage and current measurements are made over the course of the sweep and fit to swept sinusoid models using OLS. The interrelated amplitude, phase, and instantaneous frequency of the resulting waveforms are analyzed to reveal the device impedance as a function of frequency. The accuracy of the EIS technique was tested on a known resistive-capacitive circuit, and its performance was demonstrated using a single InDEC solid oxide fuel cell. Data from these tests are included and show good accuracy and high precision over the broad range of frequencies tested (100 mHz to 5 kHz).

[1]  Qing Wang,et al.  Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[2]  D. C. Evans,et al.  Design of test signals for identification of linear systems with nonlinear distortions , 1992 .

[3]  Johan Schoukens,et al.  Survey of excitation signals for FFT based signal analyzers , 1988 .

[4]  Alan M. Bond,et al.  Microcomputer-based instrumentation for multi-frequency Fourier transform alternating current (admittance and impedance) voltammetry , 1997 .

[5]  K. Goebel,et al.  Prognostics in Battery Health Management , 2008, IEEE Instrumentation & Measurement Magazine.

[6]  A. Cruz Serra,et al.  Impedance Measurement With Sine-Fitting Algorithms Implemented in a DSP Portable Device , 2008, IEEE Transactions on Instrumentation and Measurement.

[7]  Torben Jacobsen,et al.  Hysteresis in the solid oxide fuel cell cathode reaction , 2001 .

[8]  G. Popkirov,et al.  Fast time-resolved electrochemical impedance spectroscopy for investigations under nonstationary conditions , 1996 .

[9]  A. Cruz Serra,et al.  Low frequency impedance measurement using sine-fitting , 2004 .

[10]  Matthew Aaron. Cornachione,et al.  Reversible fuel cell performance and degradation , 2011 .

[11]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[12]  M. Minutoli,et al.  Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy , 2003 .

[13]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[14]  R. D. De Doncker,et al.  Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications , 2003, IEEE Transactions on Industry Applications.

[15]  Ahmad Uzair,et al.  Frequency response analysis on solar cell , 2014 .

[16]  Chester G. Motloch,et al.  Fast summation transformation for battery impedance identification , 2009, 2009 IEEE Aerospace conference.

[17]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[18]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[19]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[20]  Angelo J. Canty Bootstrap Techniques for Signal Processing , 2007 .

[21]  R. N. Schindler,et al.  A new impedance spectrometer for the investigation of electrochemical systems , 1992 .

[22]  Erich Sackmann,et al.  Fast impedance spectroscopy: General aspects and performance study for single ion channel measurements , 2000 .

[23]  Peter Händel,et al.  IEEE Standard 1057, Cramér-Rao Bound and the Parsimony Principle , 2003 .

[24]  Kenneth R. Bundy,et al.  An electrochemical impedance spectroscopy method for prediction of the state of charge of a nickel-metal hydride battery at open circuit and during discharge , 1998 .

[25]  Peter Händel,et al.  Properties of the IEEE-STD-1057 four-parameter sine wave fit algorithm , 2000, IEEE Trans. Instrum. Meas..

[26]  Peter Händel,et al.  IEEE Standard 1057, Crame/spl acute/r-Rao bound and the parsimony principle , 2006, IEEE Transactions on Instrumentation and Measurement.

[27]  Jian Colin Sun,et al.  AC impedance technique in PEM fuel cell diagnosis—A review , 2007 .

[28]  M.H. Nehrir,et al.  Comparison and Identification of Static Electrical Terminal Fuel Cell Models , 2007, IEEE Transactions on Energy Conversion.

[29]  R. N. Schindler,et al.  Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain , 1993 .

[30]  Yukio Ogata,et al.  Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. , 2006, The journal of physical chemistry. B.

[31]  J.L. Morrison,et al.  Real time estimation of battery impedance , 2006, 2006 IEEE Aerospace Conference.

[32]  Bingwen Wang,et al.  A review of AC impedance modeling and validation in SOFC diagnosis , 2007 .