3-D tomographic limb sounder retrieval techniques: irregular grids and Laplacian regularisation

Abstract. Multiple limb sounder measurements of the same atmospheric region taken from different directions can be combined in a 3-D tomographic retrieval. Mathematically, this is a computationally expensive inverse modelling problem. It typically requires an introduction of some general knowledge of the atmosphere (regularisation) due to its underdetermined nature. This paper introduces a consistent, physically motivated (no ad-hoc parameters) variant of the Tikhonov regularisation scheme based on spatial derivatives of the first-order and Laplacian. As shown by a case study with synthetic data, this scheme, combined with irregular grid retrieval methods employing Delaunay triangulation, improves both upon the quality and the computational cost of 3-D tomography. It also eliminates grid dependence and the need to tune parameters for each use case. The few physical parameters required can be derived from in situ measurements and model data. Tests show that a 82 % reduction in the number of grid points and 50 % reduction in total computation time, compared to previous methods, could be achieved without compromising results. An efficient Monte Carlo technique was also adopted for accuracy estimation of the new retrievals.

[1]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[2]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[3]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[4]  Michael P. Weinreb,et al.  Method to Apply Homogeneous-Path Transmittance Models to Inhomogeneous Atmospheres. , 1973 .

[5]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[6]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[7]  Martin Riese,et al.  First tomographic observations of gravity waves by the infrared limb imager GLORIA , 2017 .

[8]  Carl H. FitzGerald Optimal indexing of the vertices of graphs , 1974 .

[9]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[10]  L. Gordley,et al.  Rapid inversion of limb radiance data using an emissivity growth approximation. , 1981, Applied optics.

[11]  S. C. Lim,et al.  Generalized Whittle–Matérn random field as a model of correlated fluctuations , 2009, 0901.3581.

[12]  Lars Hoffmann,et al.  Schnelle Spurengasretrieval für das Satellitenexperiment Envisat MIPAS , 2006 .

[13]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[14]  M Carlotti,et al.  Geo-fit Approach to the Analysis of Limb-Scanning Satellite Measurements. , 2001, Applied optics.

[15]  P. Haynes,et al.  The Vertical-Scale Cascade in Atmospheric Tracers due to Large-Scale Differential Advection , 1997 .

[16]  Rolf Müller,et al.  Envisat MIPAS measurements of CFC-11: retrieval, validation, and climatology , 2008 .

[17]  Erwin Fehlberg,et al.  Some old and new Runge-Kutta formulas with stepsize control and their error coefficients , 1985, Computing.

[18]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[19]  U. Naumann,et al.  A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA , 2011 .

[20]  Andrew Gettelman,et al.  THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE , 2011 .

[21]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[22]  Linnea M. Avallone,et al.  Estimating the impact of small‐scale variability in satellite measurement validation , 2006 .

[23]  Michaela I. Hegglin,et al.  A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO , 2009 .

[24]  Kevin W. Bowman,et al.  Two-dimensional characterization of atmospheric profile retrievals from limb sounding observations , 2004 .

[25]  W. L. Godson The evaluation of infra‐red radiative fluxes due to atmospheric water vapour , 1953 .

[26]  Ying Bai,et al.  On the comparison of fuzzy interpolation and other interpolation methods in high accuracy measurements , 2010, International Conference on Fuzzy Systems.

[27]  Jörn Ungermann,et al.  Improving retrieval quality for airborne limb sounders by horizontal regularisation , 2012 .

[28]  Martin Riese,et al.  Towards a 3-D tomographic retrieval for the air-borne limb-imager GLORIA , 2010 .

[29]  Martin Riese,et al.  Limited angle tomography of mesoscale gravity waves by the infrared limb-sounder GLORIA , 2018, Atmospheric Measurement Techniques.

[30]  Piers M. Forster,et al.  Radiative forcing and temperature trends from stratospheric ozone changes , 1997 .

[31]  Michael Höpfner,et al.  Tomographic retrieval of atmospheric parameters from infrared limb emission observations. , 2005, Applied optics.

[32]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[33]  R. Goody,et al.  A statistical model for water‐vapour absorption , 1952 .

[34]  Ying Bai,et al.  On the Comparison of Trilinear, Cubic Spline, and Fuzzy Interpolation Methods in the High-Accuracy Measurements , 2010, IEEE Transactions on Fuzzy Systems.

[35]  Peter Preusse,et al.  Transparency of the atmosphere to short horizontal wavelength gravity waves , 2008 .

[36]  Johannes Orphal,et al.  Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) scientific objectives , 2014 .

[37]  J. Baglama,et al.  Numerical approximation of the product of the square root of a matrix with a vector , 2000 .

[38]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[39]  Martin Riese,et al.  Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects , 2012 .

[40]  Thomas Birner,et al.  Fine‐scale structure of the extratropical tropopause region , 2006 .

[41]  Dorian Krause,et al.  JURECA: General-purpose supercomputer at Jülich Supercomputing Centre , 2016 .

[42]  Johannes Orphal,et al.  Instrument concept of the imaging Fourier transform spectrometer GLORIA , 2014 .