Declining morphological diversity in snakefly larvae during last 100 million years

[1]  M. Fowler,et al.  Summary of the fossil record of megalopteran and megalopteran-like larvae, with a report of new specimens , 2022, Bulletin of Geosciences.

[2]  C. Haug,et al.  The morphological diversity of long-necked lacewing larvae (Neuroptera: Myrmeleontiformia) , 2021, Bulletin of Geosciences.

[3]  C. Haug,et al.  Split-footed lacewings declined over time: indications from the morphological diversity of their antlion-like larvae , 2021, PalZ.

[4]  M. Engel,et al.  The complete life cycle of a Cretaceous beetle parasitoid , 2021, Current Biology.

[5]  V. Baranov,et al.  Challenges for understanding lacewings: how to deal with the incomplete data from extant and fossil larvae of Nevrorthidae? (Neuroptera) , 2020 .

[6]  M. Engel,et al.  A new and diverse paleofauna of the extinct snakefly family Baissopteridae from the mid-Cretaceous of Myanmar (Raphidioptera) , 2020, Organisms Diversity & Evolution.

[7]  J. Haug,et al.  A 100 million-year-old snake-fly larva with an unusually large antenna , 2020, Bulletin of Geosciences.

[8]  M. Engel,et al.  Straight-jawed lacewing larvae (Neuroptera) from Lower Cretaceous Spanish amber, with an account on the known amber diversity of neuropterid immatures , 2020, Cretaceous Research.

[9]  V. Perrichot,et al.  The decline of silky lacewings and morphological diversity of long-nosed antlion larvae through time , 2020, Palaeontologia Electronica.

[10]  Andres F. Herrera Florez,et al.  Identifying the oldest larva of a myrmeleontiformian lacewing – a morphometric approach , 2020, Acta Palaeontologica Polonica.

[11]  C. Haug,et al.  A 100-million-year old slim insectan predator with massive venom-injecting stylets - a new type of neuropteran larva from Burmese amber , 2019 .

[12]  C. Haug,et al.  Beetle larvae with unusually large terminal ends and a fossil that beats them all (Scraptiidae, Coleoptera) , 2019, PeerJ.

[13]  C. Haug,et al.  A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts , 2019, Zoological Letters.

[14]  C. Haug,et al.  Cretaceous chimera – an unusual 100-million-year old neuropteran larva from the “experimental phase” of insect evolution , 2019, Palaeodiversity.

[15]  P. Trudeau,et al.  as a New and , 2019 .

[16]  C. Haug,et al.  The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host , 2018, Zoological Letters.

[17]  J. Haug Why the term “larva” is ambiguous, or what makes a larva? , 2018, Acta Zoologica.

[18]  Bo Wang,et al.  Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings , 2018, Nature Communications.

[19]  M. Engel,et al.  Liverwort Mimesis in a Cretaceous Lacewing Larva , 2018, Current Biology.

[20]  A. Lemmon,et al.  Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera) , 2018 .

[21]  M. Engel,et al.  Phylogeny and Evolution of Neuropterida: Where Have Wings of Lace Taken Us? , 2018, Annual review of entomology.

[22]  M. Engel,et al.  Early Morphological Specialization for Insect-Spider Associations in Mesozoic Lacewings , 2016, Current Biology.

[23]  M. Engel,et al.  Debris-carrying camouflage among diverse lineages of Cretaceous insects , 2016, Science Advances.

[24]  M. Engel,et al.  A defensive behavior and plant-insect interaction in Early Cretaceous amber--The case of the immature lacewing Hallucinochrysa diogenesi. , 2016, Arthropod structure & development.

[25]  D. Grimaldi,et al.  Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous , 2016, Current Biology.

[26]  R. Garwood,et al.  Evolution of insect wings and development – new details from Palaeozoic nymphs , 2016, Biological reviews of the Cambridge Philosophical Society.

[27]  C. Haug,et al.  How metamorphic is holometabolous development? Using microscopical methods to look inside the scorpionfly (Panorpa) pupa (Mecoptera, Panorpidae) , 2016 .

[28]  Anne Strauss,et al.  Encyclopedia Of Insects , 2016 .

[29]  D. Ahrens,et al.  The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence? , 2014, PloS one.

[30]  D. Ren,et al.  New transitional fossil snakeflies from China illuminate the early evolution of Raphidioptera , 2014, BMC Evolutionary Biology.

[31]  R. Beutel,et al.  Insect Morphology and Phylogeny: A Textbook For Students Of Entomology , 2013 .

[32]  C. Haug,et al.  Isolated mantis shrimp dactyli from the Pliocene of North Carolina and their bearing on the history of Stomatopoda , 2013 .

[33]  M. Engel,et al.  Early evolution and ecology of camouflage in insects , 2012, Proceedings of the National Academy of Sciences.

[34]  M. Engel,et al.  Snakefly diversity in Early Cretaceous amber from Spain (Neuropterida, Raphidioptera) , 2012, ZooKeys.

[35]  D. Adams,et al.  Ecological radiation with limited morphological diversification in salamanders , 2012, Journal of evolutionary biology.

[36]  R. N. Aldini Lacewings (Neuroptera) as beneficial insects in orchards: findings for plum and cherry trees in Lombardy (northern Italy) , 2012 .

[37]  Gerd Mayer,et al.  Autofluorescence imaging, an excellent tool for comparative morphology , 2011, Journal of microscopy.

[38]  B. Bomfleur,et al.  Photography of plant fossils—New techniques, old tricks , 2011 .

[39]  W. Peters,et al.  Lehrbuch der Entomologie , 2010 .

[40]  T.,et al.  First fossil stomatopod larva ( Arthropoda : Crustacea ) and a new way of documenting Solnhofen fossils ( Upper Jurassic , Southern Germany ) , 2008 .

[41]  M. Engel,et al.  Early Cretaceous Snakefly Larvae in Amber from Lebanon, Myanmar, and France (Raphidioptera) , 2007 .

[42]  Paul M. Choate,et al.  Evolution of the Insects , 2006 .

[43]  M. W. McCoy,et al.  Size correction: comparing morphological traits among populations and environments , 2006, Oecologia.

[44]  M. Zelditch,et al.  Evolutionary modifications of ontogeny: heterochrony and beyond , 2005, Paleobiology.

[45]  W. Weitschat,et al.  Atlas of Plants and Animals in Baltic Amber , 2003 .

[46]  M. Engel The Smallest Snakefly (Raphidioptera: Mesoraphidiidae): A New Species in Cretaceous Amber from Myanmar, with a Catalog of Fossil Snakeflies , 2002 .

[47]  H. Aspöck THE BIOLOGY OF RAPHIDIOPTERA: A REVIEW OF PRESENT KNOWLEDGE , 2002 .

[48]  A. Yang,et al.  Modularity, evolvability, and adaptive radiations: a comparison of the hemi‐ and holometabolous insects , 2001, Evolution & development.

[49]  M. Engel A new fossil snake-fly species from Baltic amber (Raphidioptera: Inocelliidae) , 1995 .

[50]  M. Renner,et al.  Biologie und Ökologie der Insekten : ein Taschenlexikon , 1988 .

[51]  Fred L. Bookstein,et al.  A Comment on Shearing as a Method for “Size Correction” , 1987 .

[52]  J. Costlow Metamorphosis in crustaceans , 1968 .

[53]  T. P. Burnaby Growth-Invariant Discriminant Functions and Generalized Distances , 1966 .

[54]  R. S. Woglum,et al.  Observations on the Life History and Morphology of Agulla Astuta (Banks) (Neuroptera: Raphidiodea: Raphidiidae) , 1959 .

[55]  R. S. Woglum,et al.  Observations on the Life History and Morphology of Agulla Bractea Carpenter (Neuroptera: Raphidiodea: Raphidiidae) , 1958 .

[56]  St. Die Tierwelt Mitteleuropas. , 1937, Anzeiger für Schädlingskunde.

[57]  P. Deegener,et al.  Handbuch der Entomologie , 1913 .

[58]  G. Berendt Die im Bernstein befindlichen organischen Reste der Vorwelt , 1845 .