Nonlinear-carrier control for high-power-factor rectifiers based on up-down switching converters

In this paper, nonlinear-carrier (NLC) control is proposed for high-power-factor rectifiers based on flyback, Cuk, Sepic, and other up-down power converters operated in the continuous conduction mode (CCM). In the NLC controller, the switch duty ratio is determined by comparing a signal proportional to the integral of the switch current with a periodic nonlinear-carrier waveform. The shape of the NLC waveform is determined so that the resulting input-line current follows the input-line voltage, as required for unity power factor rectification. A simple exponential carrier waveform generator is described. Using the NLC controller, input-line voltage sensing, error amplifier in the current-shaping loop, and multiplier/divider circuitry in the voltage feedback loop are eliminated. The simple high-performance controller is well suited for integrated-circuit implementation, Results of experimental verification on a 150 W flyback rectifier are presented.

[1]  Robert W. Erickson,et al.  Canonical modeling of power processing circuits based on the POPI concept , 1992 .

[2]  Slobodan Cuk,et al.  Input current shaper using Cuk converter , 1992, [Proceedings] Fourteenth International Telecommunications Energy Conference - INTELEC '92.

[3]  G. C. Hua,et al.  Power factor correction with flyback converter employing charge control , 1993, Proceedings Eighth Annual Applied Power Electronics Conference and Exposition,.

[4]  J. Sebastian,et al.  Design criteria for SEPIC and Cuk converters as power factor preregulators in discontinuous conduction mode , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[5]  S. Singer,et al.  Design of a simple high-power-factor rectifier based on the flyback converter , 1990, Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition.

[6]  Robert W. Erickson,et al.  Nonlinear-carrier control for high power factor boost rectifiers , 1995, Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95.