Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet

Abstract The Namche Barwa Complex exposed in the Eastern Himalayan Syntaxis, south Tibet, underwent high-pressure (HP) and high-temperature (HT) granulite-facies metamorphism and associated anatexis. The HP pelitic granulites contain garnet, kyanite, sillimanite, cordierite, biotite, quartz, plagioclase, K-feldspar, spinel, ilmenite and graphite. These minerals show composite reaction texture and varying chemical compositions and form four successive mineral assemblages. Phase equilibrium modeling constrains the P–T conditions of 10–12 kbar and 550–700 °C for the prograde stage, 13–16 kbar and 840–880 °C for the peak-metamorphic stage, and 5–6 kbar and 830–870 °C for the late retrograde stage, indicating that the HP granulites recorded a clockwise P–T path involving the early heating burial and anatexis through dehydration melting of both muscovite and biotite, and the late isothermal decompression and gradual melt crystallization under HT granulite-facies conditions. The zircon U–Pb dating reveals that the HT granulite-facies metamorphism probably initiated at ca. 40 Ma, and lasted to ca. 8 Ma. Therefore, the present study provides robust evidence for a long-lived HT metamorphism and associated anatexis in the deeply buried Indian continent and important constraints on the leucogranite generation and tectonic evolution of the Himalayan orogen.

[1]  N. Harris,et al.  The role of fluids in the formation of High Himalayan leucogranites , 1993, Geological Society, London, Special Publications.

[2]  D. Craw,et al.  Mechanical links between erosion and metamorphism in Nanga Parbat , 2002 .

[3]  An Yin,et al.  Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation , 2006 .

[4]  N. Harris,et al.  Decompression and anatexis of Himalayan metapelites , 1994 .

[5]  P. Bown,et al.  Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints , 2010 .

[6]  M. Searle,et al.  Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(‐Th)‐Pb Geochronology , 2009, The Journal of Geology.

[7]  C. Davidson,et al.  Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics , 1996 .

[8]  Hong-lin Yuan,et al.  Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications , 2009 .

[9]  L. Ding,et al.  Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet , 2007 .

[10]  J. Burg,et al.  Viscous heating allows thrusting to overcome crustal-scale buckling: Numerical investigation with application to the Himalayan syntaxes , 2008 .

[11]  D. Waters The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks , 2001 .

[12]  F. Spear On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling , 1991 .

[13]  T. Harrison,et al.  Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet , 2008 .

[14]  M. Kohn,et al.  Preserved Zr-Temperatures and U–Pb Ages in High-Grade Metamorphic Titanite: Evidence for a Static Hot Channel in the Himalayan Orogen , 2011 .

[15]  R. Powell,et al.  High-Ti muscovite as a prograde relict in high pressure granulites with metamorphic Devonian zircon ages (Běstvina granulite body, Bohemian Massif): Consequences for the relamination model of subducted crust , 2014 .

[16]  R. Vernon,et al.  Principles of Metamorphic Petrology , 2008 .

[17]  W. Kidd,et al.  Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa , 2009 .

[18]  M. Handy,et al.  Experimental deformation of partially melted granite revisited: implications for the continental crust , 2005 .

[19]  G. Gehrels,et al.  Building the Pamirs: The view from the underside: Geology , 2003 .

[20]  M. Searle,et al.  The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal–South Tibet , 2003, Journal of the Geological Society.

[21]  M. Searle,et al.  Probing the basement of southern Tibet: evidence from crustal xenoliths entrained in a Miocene ultrapotassic dyke , 2009, Journal of the Geological Society.

[22]  Dunyi Liu,et al.  Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure‐temperature‐deformation‐time constraints on orogenic models , 2010 .

[23]  M. Caddick,et al.  Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism , 2010 .

[24]  M. Searle,et al.  Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya , 2009 .

[25]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[26]  J. Zhang,et al.  Structural kinematics, metamorphic P–T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south‐central Tibet: implication for a revised channel flow , 2013 .

[27]  D. Visonà,et al.  Two-mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating? , 2002 .

[28]  Q. Zhang,et al.  Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet , 2003 .

[29]  N. Rogers,et al.  Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform , 2004 .

[30]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[31]  M. Kohn,et al.  Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications , 2010 .

[32]  K. Yi,et al.  Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crystalline Sequence in the far-eastern Nepal Himalaya , 2012 .

[33]  T. Holland,et al.  Mixing properties of phengitic micas and revised garnet‐phengite thermobarometers , 2002 .

[34]  D. Rubatto,et al.  Zircon Behaviour in Deeply Subducted Rocks , 2007 .

[35]  T. Harrison,et al.  New insights into the origin of two contrasting Himalayan granite belts , 1997 .

[36]  Guochun Zhao,et al.  Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: petrology, zircon geochronology and implications for the subduction of Neo‐Tethys and the Indian continent beneath Asia , 2010 .

[37]  Y. Liu,et al.  Petrology of high‐pressure granulites from the eastern Himalayan syntaxis , 1997 .

[38]  C. Teyssier,et al.  Isothermal decompression, partial melting and exhumation of deep continental crust , 2004, Geological Society, London, Special Publications.

[39]  B. Cesare,et al.  A thermodynamic model for titanium and ferric iron solution in biotite , 2009 .

[40]  Wei-Qiang Ji,et al.  Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet , 2009 .

[41]  Z. Hou,et al.  Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen , 2012 .

[42]  H. Massonne,et al.  Geochronological and Petrological Constraints for Tectonic Evolution of the Central Greater Himalayan Sequence in the Kharta Area, Southern Tibet , 2007, The Journal of Geology.

[43]  W. Kidd,et al.  U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa Area , 2004 .

[44]  R. Powell,et al.  Partial melting of metagreywacke: a calculated mineral equilibria study , 2008 .

[45]  C. Beaumont,et al.  Models of large, hot orogens containing a collage of reworked and accreted terranes , 2010 .

[46]  L. Godin,et al.  Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences: an example from far‐northwest Nepal , 2012 .

[47]  D. Rubatto,et al.  Early Oligocene partial melting in the Main Central Thrust Zone (Arun valley, eastern Nepal Himalaya) , 2010 .

[48]  P. Kelemen,et al.  The thermal structure of continental crust in active orogens: insight from Miocene eclogite and granulite xenoliths of the Pamir Mountains , 2012 .

[49]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[50]  M. Guiraud,et al.  TRUTH AND BEAUTY IN METAMORPHIC PHASE-EQUILIBRIA: CONJUGATE VARIABLES AND PHASE DIAGRAMS , 2005 .

[51]  M. Brown,et al.  The mechanism of melt extraction from lower continental crust of orogens , 2004, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[52]  Shan Gao,et al.  Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution , 2011 .

[53]  C. Groppo,et al.  Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas) , 2007 .

[54]  L. Zeng,et al.  Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust , 2011 .

[55]  M. Brown,et al.  Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences , 2007, Journal of the Geological Society.

[56]  R. Powell,et al.  An order-disorder model for omphacitic pyroxenes in the system jadeite-diopsidehedenbergite- acmite, with applications to eclogitic rocks , 2007 .

[57]  T. Harrison,et al.  The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: Implications for the evolution of the Himalayan orogen , 2007 .

[58]  J. Malavieille,et al.  Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault , 2003 .

[59]  Xiaohan Liu,et al.  Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: new constrains from SIMS U–Pb zircon age , 2011, International Journal of Earth Sciences.

[60]  B. Burchfiel,et al.  North-south extension within the convergent Himalayan region , 1985 .

[61]  A. Tindle,et al.  The pressure–temperature–time path of migmatites from the Sikkim Himalaya , 2004 .

[62]  Zhiming Sun,et al.  The Eastern Himalayan syntaxis: major tectonic domains, ophiolitic mélanges and geologic evolution , 2006 .

[63]  M. Searle Crustal melting, ductile flow, and deformation in mountain belts: Cause and effect relationships , 2013 .

[64]  A. Pêcher,et al.  Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks , 2008 .

[65]  H. Massonne,et al.  Isotopic and structural constraints on the late Miocene to Pliocene evolution of the Namche Barwa area, eastern Himalayan syntaxis, SE Tibet , 2011 .

[66]  C. Groppo,et al.  Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal: the Effect of Decompression and Implications for the ‘Channel Flow’ Model , 2012 .

[67]  R. Powell,et al.  Progress relating to calculation of partial melting equilibria for metapelites , 2007 .

[68]  R. Powell,et al.  Spatially‐focussed melt formation in aluminous metapelites from Broken Hill, Australia , 2004 .

[69]  D. Grujic,et al.  Provenance of the Greater Himalayan sequence: Evidence from mafic granulites and amphibolites in NW Bhutan , 2010 .

[70]  M. Svojtka,et al.  Metamorphic history of garnet-rich gneiss at Ktiš in the Lhenice shear zone, Moldanubian Zone of the southern Bohemian Massif, inferred from inclusions and compositional zoning of garnet , 2011 .

[71]  R. Powell,et al.  A new thermodynamic model for clino‐ and orthoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O , 2007 .

[72]  C. Beaumont,et al.  Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation , 2001, Nature.

[73]  P. Davy,et al.  The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding , 1998 .

[74]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[75]  Xin Dong,et al.  Metagabbros of the Gangdese arc root, south Tibet: Implications for the growth of continental crust , 2014 .

[76]  P. Molnar,et al.  Active tectonics of Tibet , 1978 .

[77]  B. N. Upreti,et al.  Crustal generation of the Himalayan leucogranites , 1987 .

[78]  M. Thirlwall,et al.  Lu–Hf geochronology and trace element distribution in garnet: Implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland , 2007 .

[79]  M. Holness,et al.  Melted Rocks under the Microscope: Microstructures and Their Interpretation , 2011 .

[80]  F. Spear,et al.  Effects of diffusional modification of garnet growth zoning on P-T path calculations , 1991 .

[81]  T. Harrison,et al.  Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa) , 2001 .

[82]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[83]  M. Fuhrman,et al.  Ternary-feldspar modeling and thermometry , 1988 .

[84]  Meng Wang,et al.  History of Zircon Growth in a High-Pressure Granulite within the Eastern Himalayan Syntaxis, and Tectonic Implications , 2007 .

[85]  Michael P. Bishop,et al.  Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal‐mechanical coupling facilitated by erosion , 2001 .

[86]  L. Ding,et al.  Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process , 2004 .

[87]  L. Ratschbacher,et al.  Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir , 2005 .

[88]  R. Powell,et al.  Phase equilibria modelling of kyanite‐bearing anatectic paragneisses from the central Grenville Province , 2008 .

[89]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[90]  C. Guilmette,et al.  High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications , 2011 .

[91]  R. Powell,et al.  Melt loss and the preservation of granulite facies mineral assemblages , 2002 .

[92]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[93]  K. Hodges,et al.  Crustal thickening leading to exhumation of the Himalayan Metamorphic core of central Nepal: Insight from U‐Pb Geochronology and 40Ar/39Ar Thermochronology , 2001 .

[94]  M. Searle,et al.  Crustal structure, restoration and evolution of the Greater Himalaya in Nepal-South Tibet: implications for channel flow and ductile extrusion of the middle crust , 2006, Geological Society, London, Special Publications.

[95]  C. Dong,et al.  High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet , 2012 .

[96]  C. Beaumont,et al.  Crustal flow modes in large hot orogens , 2006, Geological Society, London, Special Publications.

[97]  M. Wilson,et al.  The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting , 2012 .

[98]  M. Searle,et al.  P–T–t–D paths of Everest Series schist, Nepal , 2008 .

[99]  L. Ding,et al.  Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet , 1999 .

[100]  R. Powell,et al.  Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) , 2001 .

[101]  M. Kohn P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence , 2008 .

[102]  Q. Zhang,et al.  Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism , 2005 .

[103]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[104]  S. Chakraborty,et al.  Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology , 2013, Contributions to Mineralogy and Petrology.

[105]  E. Sawyer Atlas of Migmatites , 2008 .

[106]  F. Liu,et al.  Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: constraints on the origin and evolution of the north-eastern margin of the Indian Craton , 2012 .

[107]  C. Beaumont,et al.  Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen , 2004 .