A modified Hestenes–Stiefel conjugate gradient method with an optimal property

In this paper, based on the numerical efficiency of Hestenes–Stiefel (HS) method, a new modified HS algorithm is proposed for unconstrained optimization. The new direction independent of the line search satisfies in the sufficient descent condition. Motivated by theoretical and numerical features of three-term conjugate gradient (CG) methods proposed by Narushima et al., similar to Dai and Kou approach, the new direction is computed by minimizing the distance between the CG direction and the direction of the three-term CG methods proposed by Narushima et al. Under some mild conditions, we establish global convergence of the new method for general functions when the standard Wolfe line search is used. Numerical experiments on some test problems from the CUTEst collection are given to show the efficiency of the proposed method.

[1]  A. Perry A Class of Conjugate Gradient Algorithms with a Two-Step Variable Metric Memory , 1977 .

[2]  L. Liao,et al.  New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .

[3]  Ya-Xiang Yuan,et al.  Convergence Properties of Nonlinear Conjugate Gradient Methods , 1999, SIAM J. Optim..

[4]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[5]  D. Luenberger,et al.  SELF-SCALING VARIABLE METRIC ( SSVM ) ALGORITHMS Part I : Criteria and Sufficient Conditions for Scaling a Class of Algorithms * t , 2007 .

[6]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[7]  Yu-Hong Dai,et al.  A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search , 2013, SIAM J. Optim..

[8]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[9]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[10]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[11]  Wufan Chen,et al.  Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization , 2008, Optim. Methods Softw..

[12]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[13]  D. Shanno On the Convergence of a New Conjugate Gradient Algorithm , 1978 .

[14]  Hiroshi Yabe,et al.  A Three-Term Conjugate Gradient Method with Sufficient Descent Property for Unconstrained Optimization , 2011, SIAM J. Optim..

[15]  D. Luenberger,et al.  Self-Scaling Variable Metric (SSVM) Algorithms , 1974 .

[16]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[17]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[18]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[19]  Li Zhang,et al.  Some descent three-term conjugate gradient methods and their global convergence , 2007, Optim. Methods Softw..

[20]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[21]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[22]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[23]  Yuhong Dai Nonlinear Conjugate Gradient Methods , 2011 .

[24]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[25]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[26]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..