A Random Walk Model for Item Recommendation in Social Tagging Systems

Social tagging, as a novel approach to information organization and discovery, has been widely adopted in many Web 2.0 applications. Tags contributed by users to annotate a variety of Web resources or items provide a new type of information that can be exploited by recommender systems. Nevertheless, the sparsity of the ternary interaction data among users, items, and tags limits the performance of tag-based recommendation algorithms. In this article, we propose to deal with the sparsity problem in social tagging by applying random walks on ternary interaction graphs to explore transitive associations between users and items. The transitive associations in this article refer to the path of the link between any two nodes whose length is greater than one. Taking advantage of these transitive associations can allow more accurate measurement of the relevance between two entities (e.g., user-item, user-user, and item-item). A PageRank-like algorithm has been developed to explore these transitive associations by spreading users’ preferences on an item similarity graph and spreading items’ influences on a user similarity graph. Empirical evaluation on three real-world datasets demonstrates that our approach can effectively alleviate the sparsity problem and improve the quality of item recommendation.

[1]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[2]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[3]  Marco Gori,et al.  ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines , 2007, IJCAI.

[4]  François Fouss,et al.  An Experimental Investigation of Graph Kernels on a Collaborative Recommendation Task , 2006, Sixth International Conference on Data Mining (ICDM'06).

[5]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[6]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[7]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[8]  Weizhe Zhang,et al.  Speak the same language with your friends: augmenting tag recommenders with social relations , 2010, HT '10.

[9]  Ian Soboroff. Charles Nicholas Combining Content and Collaboration in Text Filtering , 1999 .

[10]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[11]  Chun Chen,et al.  Document recommendation in social tagging services , 2010, WWW '10.

[12]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[13]  Panagiotis Symeonidis,et al.  MusicBox: Personalized Music Recommendation Based on Cubic Analysis of Social Tags , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[14]  Hsinchun Chen,et al.  Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering , 2004, TOIS.

[15]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[16]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[17]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[18]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[19]  Marcel Worring,et al.  Learning tag relevance by neighbor voting for social image retrieval , 2008, MIR '08.

[20]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[21]  Daniel Dajun Zeng,et al.  Latent subject-centered modeling of collaborative tagging , 2011, ACM Trans. Manag. Inf. Syst..

[22]  Andreas Hotho,et al.  Recommender Systems for Social Tagging Systems , 2012, SpringerBriefs in Electrical and Computer Engineering.

[23]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[24]  Robert Wetzker,et al.  A hybrid approach to item recommendation in folksonomies , 2009, ESAIR '09.

[25]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[26]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[27]  Panagiotis Symeonidis,et al.  A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis , 2010, IEEE Transactions on Knowledge and Data Engineering.

[28]  Michael R. Lyu,et al.  Improving Recommender Systems by Incorporating Social Contextual Information , 2011, TOIS.

[29]  Daniel Dajun Zeng,et al.  Collaborative filtering in social tagging systems based on joint item-tag recommendations , 2010, CIKM.

[30]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[31]  Nan Du,et al.  Improved recommendation based on collaborative tagging behaviors , 2008, IUI '08.

[32]  Martin Ester,et al.  TrustWalker: a random walk model for combining trust-based and item-based recommendation , 2009, KDD.

[33]  G. R. Kulkarni,et al.  Notice of Violation of IEEE Publication PrinciplesHybrid Recommender Systems: Content-Boosted Collaborative Filtering for Improved Recommendations , 2012, 2012 International Conference on Communication Systems and Network Technologies.

[34]  David Carmel,et al.  Social media recommendation based on people and tags , 2010, SIGIR.

[35]  Adam Prügel-Bennett,et al.  A Scalable, Accurate Hybrid Recommender System , 2010, 2010 Third International Conference on Knowledge Discovery and Data Mining.

[36]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[37]  Andreas Hotho,et al.  Tag recommendations in social bookmarking systems , 2008, AI Commun..

[38]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[39]  Wu-Jun Li,et al.  TagiCoFi: tag informed collaborative filtering , 2009, RecSys '09.

[40]  Wei Wei,et al.  Using a Network Analysis Approach for Organizing Social Bookmarking Tags and Enabling Web Content Discovery , 2012, TMIS.

[41]  Ioannis Konstas,et al.  On social networks and collaborative recommendation , 2009, SIGIR.

[42]  Bing Liu,et al.  CFUI: Collaborative Filtering with Unlabeled Items , 2010, WITS 2010.

[43]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[44]  Andreas Hotho,et al.  Social Tagging Systems , 2012 .

[45]  Chris H. Q. Ding,et al.  Low-order tensor decompositions for social tagging recommendation , 2011, WSDM '11.

[46]  Luo Si,et al.  An automatic weighting scheme for collaborative filtering , 2004, SIGIR '04.

[47]  Alejandro Bellogín,et al.  Self-adjusting hybrid recommenders based on social network analysis , 2011, SIGIR.

[48]  Hyeran Byun,et al.  Tag suggestion using visual content and social tag , 2011, ICUIMC '11.

[49]  Gediminas Adomavicius,et al.  Impact of data characteristics on recommender systems performance , 2012, TMIS.

[50]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[51]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[52]  Christopher Meek,et al.  A unified approach to building hybrid recommender systems , 2009, RecSys '09.

[53]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[54]  Michael R. Lyu,et al.  Effective missing data prediction for collaborative filtering , 2007, SIGIR.

[55]  Qiudan Li,et al.  A recommender system based on tag and time information for social tagging systems , 2011, Expert Syst. Appl..

[56]  Daniel Zeng,et al.  How Useful Are Tags? - An Empirical Analysis of Collaborative Tagging for Web Page Recommendation , 2008, ISI Workshops.

[57]  Luo Si,et al.  Flexible Mixture Model for Collaborative Filtering , 2003, ICML.

[58]  Yi-Cheng Zhang,et al.  Personalized Recommendation via Integrated Diffusion on User-Item-Tag Tripartite Graphs , 2009, ArXiv.

[59]  David M. Pennock,et al.  Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.

[60]  Toine Bogers,et al.  Movie Recommendation using Random Walks over the Contextual Graph , 2010 .

[61]  Bo Jiang,et al.  Tag Recommendation Based on Social Comment Network , 2010, J. Digit. Content Technol. its Appl..

[62]  Mukkai S. Krishnamoorthy,et al.  A random walk method for alleviating the sparsity problem in collaborative filtering , 2008, RecSys '08.

[63]  Lars Schmidt-Thieme,et al.  Tag-aware recommender systems by fusion of collaborative filtering algorithms , 2008, SAC '08.

[64]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.