Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water

Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion–oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters.

[1]  S. Batsanov Ionic radii for aqueous solutions , 1963 .

[2]  R. Stokes THE VAN DER WAALS RADII OF GASEOUS IONS OF THE NOBLE GAS STRUCTURE IN RELATION TO HYDRATION ENERGIES , 1964 .

[3]  H. Mckay,et al.  Nuclear and Radiochemistry , 1965, Nature.

[4]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[5]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[6]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[7]  V. Pecharsky,et al.  Handbook on the physics and chemistry of rare earths , 1979 .

[8]  F. H. Spedding,et al.  The coordination (hydration) of rare earth ions in aqueous chloride solutions from x-ray diffraction. II. LaCI 3 , PrCI 3 , and NdC1 3 a) , 1979 .

[9]  R. Martin,et al.  Lanthanides as probes for calcium in biological systems , 1979, Quarterly Reviews of Biophysics.

[10]  F. H. Spedding,et al.  The coordination (hydration) of rare earth ions in aqueous chloride solutions from x ray diffraction. I.TbCl3,DyCl3, ErCl3,TmCl3,and LuCl3 , 1979 .

[11]  F. H. Spedding,et al.  The coordination (hydration) of rare earth ions in aqueous chloride solutions from x‐ray diffraction. III. SmCl3, EuCl3, and series behavior , 1980 .

[12]  H. Kanno,et al.  Raman spectroscopic evidence for a discrete change in coordination number of rare earth aquo-ions in the middle of the series , 1980 .

[13]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[14]  J. Beattie,et al.  Structural studies on the caesium alums, CsMIII[SO4]2·12H2O , 1981 .

[15]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[16]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[17]  W. L. Jorgensen,et al.  Monte Carlo simulation of differences in free energies of hydration , 1985 .

[18]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[19]  M. Mezei The finite difference thermodynamic integration, tested on calculating the hydration free energy difference between acetone and dimethylamine in water , 1987 .

[20]  H. Wakita,et al.  An extended x‐ray absorption fine structure study of aqueous rare earth perchlorate solutions in liquid and glassy states , 1988 .

[21]  Sham Electronic structure of hydrated Ce4+ ions in solution: An x-ray-absorption study. , 1989, Physical review. B, Condensed matter.

[22]  Sham Tk Electronic structure of hydrated Ce4+ ions in solution: An x-ray-absorption study. , 1989 .

[23]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[24]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[25]  Kenneth M. Merz,et al.  CO2 binding to human carbonic anhydrase II , 1991 .

[26]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[27]  J. Andrew McCammon,et al.  Free energy difference calculations by thermodynamic integration: Difficulties in obtaining a precise value , 1991 .

[28]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[29]  L. Dang Development of nonadditive intermolecular potentials using molecular dynamics: Solvation of Li+ and F− ions in polarizable water , 1992 .

[30]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[31]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[32]  W. L. Jorgensen Supramolecular chemistry. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[33]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[34]  P. Kollman,et al.  Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins , 1995 .

[35]  D. Bagchi,et al.  Oxidative mechanisms in the toxicity of metal ions. , 1995, Free radical biology & medicine.

[36]  H. G. Petersen Accuracy and efficiency of the particle mesh Ewald method , 1995 .

[37]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[38]  M Karplus,et al.  Zinc binding in proteins and solution: A simple but accurate nonbonded representation , 1995, Proteins.

[39]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[40]  Arieh Warshel,et al.  Protein Control of Redox Potentials of Iron−Sulfur Proteins , 1996 .

[41]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[42]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[43]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[44]  Gerhard Hummer,et al.  Calculation of free‐energy differences from computer simulations of initial and final states , 1996 .

[45]  Marian Elbanowski,et al.  The lanthanides as luminescent probes in investigations of biochemical systems , 1996 .

[46]  Arieh Warshel,et al.  Protein Control of Redox Potentials of Iron‐Sulfur Proteins , 1997 .

[47]  David M Taylor The bioinorganic chemistry of actinides in blood , 1998 .

[48]  A. Ankudinov,et al.  Relativistic XANES calculations of Pu hydrates , 1998 .

[49]  P. Kollman,et al.  Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. , 1998, Science.

[50]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[51]  I. Grenthe,et al.  Structure of the Aqua Ions and Fluoride Complexes of Uranium(IV) and Thorium(IV) in Aqueous Solution an EXAFS Study. , 1999, Inorganic Chemistry.

[52]  W L Jorgensen,et al.  Prediction of drug solubility from Monte Carlo simulations. , 2000, Bioorganic & medicinal chemistry letters.

[53]  Y. Pang Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method , 2001, Proteins.

[54]  K. Hermansson,et al.  Hydration of the calcium ion. An EXAFS, large-angle x-ray scattering, and molecular dynamics simulation study. , 2001, Journal of the American Chemical Society.

[55]  A. Pyle,et al.  Metal ions in the structure and function of RNA , 2002, JBIC Journal of Biological Inorganic Chemistry.

[56]  Carmay Lim,et al.  Principles governing Mg, Ca, and Zn binding and selectivity in proteins. , 2003, Chemical reviews.

[57]  J. Gesland,et al.  6d5f and 5f2 configurations of U4+ doped into LiYF4 and YF3 crystals , 2003 .

[58]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[59]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[60]  V. Kessler,et al.  Structure of the hydrated, hydrolysed and solvated zirconium(IV) and hafnium(IV) ions in water and aprotic oxygen donor solvents. A crystallographic, EXAFS spectroscopic and large angle X-ray scattering study. , 2004, Dalton transactions.

[61]  D. Case,et al.  Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models. , 2004, Journal of the American Chemical Society.

[62]  Carmay Lim,et al.  Zn protein simulations including charge transfer and local polarization effects. , 2005, Journal of the American Chemical Society.

[63]  Lenwood S. Heath,et al.  H++: a server for estimating pKas and adding missing hydrogens to macromolecules , 2005, Nucleic Acids Res..

[64]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[65]  J. Bünzli Benefiting from the unique properties of lanthanide ions. , 2006, Accounts of chemical research.

[66]  P. Burns,et al.  Structure of the Homoleptic Thorium(IV) Aqua Ion [Th(H2O)10]Br4. , 2007, Angewandte Chemie.

[67]  David L Mobley,et al.  Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. , 2007, The Journal of chemical physics.

[68]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[69]  B. Randolf,et al.  Al(III) hydration revisited. An ab initio quantum mechanical charge field molecular dynamics study. , 2008, The journal of physical chemistry. B.

[70]  Ruibo Wu,et al.  Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study. , 2010, Journal of chemical theory and computation.

[71]  B. Randolf,et al.  Structure and dynamics of the U4+ ion in aqueous solution: an ab initio quantum mechanical charge field molecular dynamics study. , 2009, Inorganic chemistry.

[72]  Carmay Lim,et al.  Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions , 2009, J. Comput. Chem..

[73]  Thomas E. Cheatham,et al.  Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters , 2009, The journal of physical chemistry. B.

[74]  B. Randolf,et al.  Structure and Dynamics of the U 4 + Ion in Aqueous Solution : An ab Initio Quantum Mechanical Charge Field Molecular Dynamics Study , 2009 .

[75]  A. Kuznetsov,et al.  Redox potential of the Rieske iron-sulfur protein quantum-chemical and electrostatic study. , 2010, Biochimica et biophysica acta.

[76]  E. Carlson,et al.  Human Biology and Health , 2009, The Quarterly Review of Biology.

[77]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[78]  B. Randolf,et al.  A quantum mechanical charge field molecular dynamics study of Fe(2+) and Fe(3+) ions in aqueous solutions. , 2010, Inorganic chemistry.

[79]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[80]  Kenneth M Merz,et al.  Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF). , 2010, Journal of chemical theory and computation.

[81]  A. Zitolo,et al.  Analysis of the detailed configuration of hydrated lanthanoid(III) ions in aqueous solution and crystalline salts by using K- and L(3)-edge XANES spectroscopy. , 2010, Chemistry.

[82]  Joseph A. Bank,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Table S1 References Movies S1 to S3 Atomic-level Characterization of the Structural Dynamics of Proteins , 2022 .

[83]  B. Randolf,et al.  Hydration of highly charged ions , 2011, Chemical physics letters.

[84]  G. Chillemi,et al.  Revised ionic radii of lanthanoid(III) ions in aqueous solution. , 2011, Inorganic chemistry.

[85]  Dhruva K. Chakravorty,et al.  Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. , 2011, Journal of the American Chemical Society.

[86]  Bill R. Miller,et al.  Wide-open flaps are key to urease activity. , 2012, Journal of the American Chemical Society.

[87]  Bing Wang,et al.  Simulations of allosteric motions in the zinc sensor CzrA. , 2012, Journal of the American Chemical Society.

[88]  Wei Yang,et al.  Modeling Structural Coordination and Ligand Binding in Zinc Proteins with a Polarizable Potential. , 2012, Journal of chemical theory and computation.

[89]  Wibe A de Jong,et al.  Coordination and hydrolysis of plutonium ions in aqueous solution using Car-Parrinello molecular dynamics free energy simulations. , 2013, The journal of physical chemistry. A.

[90]  B. Rode,et al.  Structure and dynamics of the Th4+-ion in aqueous solution – An ab initio QMCF-MD study , 2013 .

[91]  Christoph B. Messner,et al.  Erbium(III) in aqueous solution: an ab initio molecular dynamics study. , 2013, The journal of physical chemistry. B.

[92]  Pengfei Li,et al.  Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. , 2013, Journal of chemical theory and computation.

[93]  Akansha Saxena,et al.  Multisite Ion Models That Improve Coordination and Free Energy Calculations in Molecular Dynamics Simulations. , 2013, Journal of chemical theory and computation.

[94]  Dhruva K. Chakravorty,et al.  Structure and dynamics of the N-terminal domain of the Cu(I) binding protein CusB. , 2013, Biochemistry.

[95]  Dhruva K. Chakravorty,et al.  Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods , 2013, Journal of biomolecular NMR.

[96]  Pengfei Li,et al.  Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions. , 2014, Journal of chemical theory and computation.

[97]  Mona S. Minkara,et al.  Molecular Dynamics Study of Helicobacter pylori Urease , 2014, Journal of chemical theory and computation.

[98]  Shina Caroline Lynn Kamerlin,et al.  Force Field Independent Metal Parameters Using a Nonbonded Dummy Model , 2014, The journal of physical chemistry. B.

[99]  C. Lim,et al.  Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. , 2014, Chemical reviews.