Enhanced Biologically Inspired Model for Object Recognition

The biologically inspired model (BIM) proposed by Serre presents a promising solution to object categorization. It emulates the process of object recognition in primates' visual cortex by constructing a set of scale- and position-tolerant features whose properties are similar to those of the cells along the ventral stream of visual cortex. However, BIM has potential to be further improved in two aspects: mismatch by dense input and randomly feature selection due to the feedforward framework. To solve or alleviate these limitations, we develop an enhanced BIM (EBIM) in terms of the following two aspects: 1) removing uninformative inputs by imposing sparsity constraints, 2) apply a feedback loop to middle level feature selection. Each aspect is motivated by relevant psychophysical research findings. To show the effectiveness of the EBIM, we apply it to object categorization and conduct empirical studies on four computer vision data sets. Experimental results demonstrate that the EBIM outperforms the BIM and is comparable to state-of-the-art approaches in terms of accuracy. Moreover, the new system is about 20 times faster than the BIM.

[1]  Lior Wolf,et al.  Using Biologically Inspired Features for Face Processing , 2007, International Journal of Computer Vision.

[2]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[3]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[4]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[5]  Nicu Sebe,et al.  Context-Based Object-Class Recognition and Retrieval by Generalized Correlograms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[7]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[8]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[12]  D. Medin,et al.  The role of theories in conceptual coherence. , 1985, Psychological review.

[13]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[14]  Joachim Denzler,et al.  Boosting colored local features for generic object recognition , 2008, Pattern Recognition and Image Analysis.

[15]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[16]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[17]  Atsuo Yoshitaka,et al.  A Survey on Content-Based Retrieval for Multimedia Databases , 1999, IEEE Trans. Knowl. Data Eng..

[18]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[19]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[20]  Manuel J. Marín-Jiménez,et al.  Empirical Study of Multi-scale Filter Banks for Object Categorization , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[21]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[22]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[23]  Cordelia Schmid,et al.  Learning Object Representations for Visual Object Class Recognition , 2007, ICCV 2007.

[24]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[25]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[26]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[27]  Guillaume Bouchard,et al.  Hierarchical part-based visual object categorization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[29]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[31]  Lior Wolf,et al.  Perception Strategies in Hierarchical Vision Systems , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[32]  Thomas G. Dietterich,et al.  Learning visual dictionaries and decision lists for object recognition , 2008, 2008 19th International Conference on Pattern Recognition.

[33]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[34]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[35]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[36]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[37]  Sharath Pankanti,et al.  Biometrics: Personal Identification in Networked Society , 2013 .

[38]  C. Koch,et al.  Visual Selective Behavior Can Be Triggered by a Feed-Forward Process , 2003, Journal of Cognitive Neuroscience.

[39]  Vladimir Pavlovic,et al.  Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[41]  Arun Ross,et al.  An introduction to biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[42]  Lior Wolf,et al.  Image representations beyond histograms of gradients: The role of Gestalt descriptors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[44]  David G. Lowe,et al.  University of British Columbia. , 1945, Canadian Medical Association journal.

[45]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  B. Schiele,et al.  Interleaved Object Categorization and Segmentation , 2003, BMVC.

[47]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  Zhouyu Fu,et al.  Semantic-Based Surveillance Video Retrieval , 2007, IEEE Transactions on Image Processing.

[49]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[50]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[51]  Peter Auer,et al.  Generic object recognition with boosting , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[53]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[54]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[55]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..