Relevance vector machine for depression prediction

The objective and automated monitoring of depression using behavioral signals is confounded by the wide clinical profile of this commonly occurring mood disorder. This paper introduces Relevance Vector Machines, a novel method for predicting clinical depression scores from paralinguistic cues. It highlights many of the advantages RVM can offer depression prediction; sparsity, implicit noise characterization, an explicit probabilistic output and heterogeneous mapping property which allow one or more arbitrary, non-linear, transform to be used in conjunction with a RVM. Results indicate that RVMs can perform as strongly as Support Vector Regression in a brute-forcing paradigm. Of particular interest is the heterogeneous mapping property which improves RVM performance without requiring an expensive, in terms of data and time, search of the operating parameter space.

[1]  Thomas F. Quatieri,et al.  Vocal and Facial Biomarkers of Depression based on Motor Incoordination and Timing , 2014, AVEC '14.

[2]  Björn W. Schuller,et al.  Paralinguistics in speech and language - State-of-the-art and the challenge , 2013, Comput. Speech Lang..

[3]  Björn W. Schuller,et al.  AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.

[4]  Dimitra Vergyri,et al.  The SRI AVEC-2014 Evaluation System , 2014, AVEC '14.

[5]  Hatice Gunes,et al.  Output-associative RVM regression for dimensional and continuous emotion prediction , 2011, Face and Gesture 2011.

[6]  Roland Göcke,et al.  Diagnosis of depression by behavioural signals: a multimodal approach , 2013, AVEC@ACM Multimedia.

[7]  Björn W. Schuller,et al.  Brute-forcing hierarchical functionals for paralinguistics: A waste of feature space? , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  Thomas F. Quatieri,et al.  A review of depression and suicide risk assessment using speech analysis , 2015, Speech Commun..

[9]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[10]  J Sundberg,et al.  Measuring the rate of change of voice fundamental frequency in fluent speech during mental depression. , 1988, The Journal of the Acoustical Society of America.

[11]  P. Bech,et al.  The heterogeneity of the depressive syndrome: when numbers get serious , 2011, Acta psychiatrica Scandinavica.

[12]  Mohammad H. Mahoor,et al.  Nonverbal social withdrawal in depression: Evidence from manual and automatic analyses , 2014, Image Vis. Comput..

[13]  Björn W. Schuller,et al.  AVEC 2014: 3D Dimensional Affect and Depression Recognition Challenge , 2014, AVEC '14.

[14]  A. Flint,et al.  Abnormal speech articulation, psychomotor retardation, and subcortical dysfunction in major depression. , 1993, Journal of psychiatric research.

[15]  Michael E. Tipping Bayesian Inference: An Introduction to Principles and Practice in Machine Learning , 2003, Advanced Lectures on Machine Learning.

[16]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[17]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[18]  A. Beck,et al.  Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. , 1996, Journal of personality assessment.

[19]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[20]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[21]  Albert A. Rizzo,et al.  Automatic audiovisual behavior descriptors for psychological disorder analysis , 2014, Image Vis. Comput..

[22]  Vidhyasaharan Sethu,et al.  Probabilistic acoustic volume analysis for speech affected by depression , 2014, INTERSPEECH.

[23]  Björn W. Schuller,et al.  Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge , 2011, Speech Commun..

[24]  J. Olesen,et al.  The economic cost of brain disorders in Europe , 2012, European journal of neurology.