Zero-mass-electrons limits in hydrodynamic models for plasmas
暂无分享,去创建一个
[1] Ansgar Jüngel,et al. ON THE EXISTENCE AND UNIQUENESS OF TRANSIENT SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS , 1994 .
[2] Roberto Natalini,et al. Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[3] P. Souganidis,et al. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .
[4] Roberto Natalini,et al. The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations , 1996 .
[5] Luc Tartar,et al. Compensated compactness and applications to partial differential equations , 1979 .
[6] A. Jüngel. A Nonlinear Drift ‐ Diffusion System with Electric Convection Arising in Electrophoretic and Semiconductor Modeling , 1997 .
[7] S. Cordier,et al. Système Euler-Poisson non linéaire. Existence globale de solutions faibles entropiques , 1998 .
[8] Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler-Poisson system , 2000 .
[9] B. Perthame,et al. Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .