Infrared Moon imaging for remote sensing of atmospheric smoke layers.

Simultaneous visible and long-wave infrared (IR) images of the Moon were used with a simple energy-balance model to study the spatial pattern of lunar surface temperatures. The thermal images were obtained with a radiometrically calibrated, compact, low-cost, commercial IR camera mounted on a small telescope. Differences between the predicted and measured maximum Moon temperatures were used to determine the infrared optical depth (OD), which represents the path-integrated extinction of an elevated layer of wildfire smoke in the atmosphere. The OD values retrieved from the IR Moon images were combined with simultaneous OD measurements from a ground-based, zenith-pointing lidar operating at a wavelength of 532 nm to determine an IR-to-visible OD ratio of 0.50±0.18 for moderately aged wildfire smoke aerosol.

[1]  Xiaoxiong Xiong,et al.  MODIS Reflective Solar Bands On-Orbit Lunar Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  A. Vasavada,et al.  Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment , 2012 .

[3]  H. Kieffer,et al.  The Spectral Irradiance of the Moon , 2005 .

[4]  D. F. Winter,et al.  Directional characteristics of infrared emission from the moon , 1971 .

[5]  Paul E. Lewis,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Defense + Commercial Sensing.

[6]  P. Quinn,et al.  Clear‐sky infrared aerosol radiative forcing at the surface and the top of the atmosphere , 2003 .

[7]  J. Shaw Degree of linear polarization in spectral radiances from water-viewing infrared radiometers. , 1999, Applied optics.

[8]  Sabino Piazzolla,et al.  Infrared cloud imaging in support of Earth-space optical communication. , 2009, Optics express.

[9]  M. Vollmer,et al.  Surface temperatures of the Moon: measurements with commercial infrared cameras , 2012 .

[10]  Joseph A. Shaw,et al.  Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility , 2013 .

[11]  Frank H. Murcray,et al.  Infrared emissivity of lunar surface features: 1. Balloon-borne observations , 1970 .

[12]  Jeffrey L. Linsky,et al.  The Moon as a Proposed Radiometric Standard for Microwave and Infrared Observations of Extended Sources , 1973 .

[13]  J. Bandfield,et al.  Derivation of martian surface slope characteristics from directional thermal infrared radiometry , 2008 .

[14]  J. Notholt Stratospheric trace gas concentrations in the Arctic polar night derived by FTIR spectroscopy witgh the moon as IR light source , 1993 .

[15]  Kohei Mizutani,et al.  Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera. , 2005, Optics express.

[16]  Junqiang Sun,et al.  Radiometric stability monitoring of the MODIS reflective solar bands using the Moon , 2003 .

[17]  Michael Vollmer,et al.  Colours of the Sun and Moon: the role of the optical air mass , 2006 .

[18]  Hugh H. Kieffer,et al.  Establishing the Moon as a Spectral Radiance Standard , 1996 .

[19]  Joseph A. Shaw,et al.  Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody , 2014 .

[20]  Joseph A. Shaw,et al.  Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization , 2013 .

[21]  Joseph A. Shaw,et al.  Icy wave-cloud lunar corona and cirrus iridescence. , 2011, Applied optics.

[22]  M. Mellon,et al.  Brightness temperatures of the lunar surface: Calibration and global analysis of the Clementine long‐wave infrared camera data , 2000 .

[23]  M. Vollmer,et al.  Rings around the sun and moon: coronae and diffraction , 2005 .

[24]  Steven C. Bender,et al.  On-orbit radiometric calibration over time and between spacecraft using the Moon , 2003, SPIE Remote Sensing.

[25]  P. Nugent,et al.  Physics principles in radiometric infrared imaging of clouds in the atmosphere , 2013 .

[26]  Paul E. Johnson,et al.  The effect of surface roughness on lunar thermal emission spectra , 1993 .

[27]  Paul E. Johnson,et al.  Modeling the non-grey-body thermal emission from the full moon , 1991 .

[28]  Jonathan P. Taylor,et al.  Radiative properties and direct effect of Saharan dust measured by the C‐130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum , 2003 .

[29]  Nathan Seldomridge,et al.  Dual-polarization lidar using a liquid crystal variable retarder , 2006 .

[30]  Alain Chedin,et al.  Dust altitude and infrared optical depth from AIRS , 2004 .

[31]  William D. Smythe,et al.  The Opposition Effect of the Moon: Coherent BackscatterandShadow Hiding , 1998 .

[32]  J. Notholt The Moon as a light source for FTIR measurements of stratospheric trace gases during the polar night: Application for HNO3 in the Arctic , 1994 .

[33]  William L. Smith,et al.  A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios , 1999 .

[34]  Re-visiting the atmospheric corona. , 2015, Applied optics.

[35]  Joseph A. Shaw,et al.  Cloud statistics measured with the infrared cloud imager (ICI) , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[36]  C. T. Brown,et al.  The Earthshine Project: update on photometric and spectroscopic measurements , 2004 .

[37]  Shaopeng Huang Surface temperatures at the nearside of the Moon as a record of the radiation budget of Earth’s climate system , 2008 .

[38]  Philip R. Goode,et al.  Earthshine and the Earth's albedo: 1. Earthshine observations and measurements of the lunar phase function for accurate measurements of the Earth's Bond albedo , 2003 .

[39]  A. Maghrabi On the measurements of the moon's infrared temperature and its relation to the phase angle , 2014 .

[40]  James A. Gardner,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Asia-Pacific Remote Sensing.

[41]  Heidi Suzanne Strader,et al.  Trends in atmospheric carbon dioxide over the last ten to fifteen years , 1994 .

[42]  Jeff McIntire,et al.  Calibration of NPP VIIRS fire detection band using lunar observations , 2012, Remote Sensing.

[43]  Joseph A. Shaw,et al.  Modeling infrared lunar radiance , 1999 .

[44]  L Kaufman,et al.  The Moon Illusion, I: Explanation of this phenomenon was sought through the use of artificial moons seen on the sky. , 1962, Science.

[45]  A. T. Young Air mass and refraction. , 1994, Applied optics.

[46]  Joseph A. Shaw,et al.  Errata: Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization , 2013 .

[47]  Joseph A Shaw,et al.  Coronas and iridescence in mountain wave clouds. , 2003, Applied optics.

[48]  S. Young,et al.  Analysis of lidar backscatter profiles in optically thin clouds. , 1995, Applied optics.

[49]  Hugh H. Kieffer,et al.  Photometric stability of the lunar surface , 1997 .

[50]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[51]  Joseph A. Shaw,et al.  Cloud optical depth measured with ground-based, uncooled infrared imagers , 2012, Asia-Pacific Environmental Remote Sensing.

[52]  C. Allen,et al.  The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment , 2010 .

[53]  Michael Vollmer,et al.  Lunar eclipse photometry: absolute luminance measurements and modeling. , 2008, Applied optics.

[54]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[55]  L. Kaufman,et al.  The Moon Illusion, II , 1962, Science.

[56]  Joseph A. Shaw,et al.  Calibration of uncooled LWIR microbolometer imagers to enable long-term field deployment , 2014, Defense + Security Symposium.