Density-functional theory of linear and nonlinear time-dependent molecular properties

We present density-functional theory for linear and nonlinear response functions using an explicit exponential parametrization of the density operator. The response functions are derived using two alternative variation principles, namely, the Ehrenfest principle and the quasienergy principle, giving different but numerically equivalent formulas. We present, for the first time, calculations of dynamical hyperpolarizabilities for hybrid functionals including exchange-correlation functionals at the general gradient-approximation level and fractional exact Hartree–Fock exchange. Sample calculations are presented of the first hyperpolarizability of the para-nitroaniline molecule and of a porphyrin derived push–pull molecule, showing good agreement with available experimental data.

[1]  M. Grüning,et al.  On the required shape corrections to the local density and generalized gradient approximations to the Kohn-Sham potentials for molecular response calculations of (hyper)polarizabilities and excitation energies , 2002 .

[2]  H. Ågren,et al.  Role of the cavity field in nonlinear optical response in the condensed phase , 2001 .

[3]  John P. Perdew,et al.  Electron correlation energies from scaled exchange-correlation kernels: Importance of spatial versus temporal nonlocality , 2000 .

[4]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[5]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[6]  Trygve Helgaker,et al.  Nuclear shielding constants by density functional theory with gauge including atomic orbitals , 2000 .

[7]  K. Burke,et al.  Several Theorems in Time-Dependent Density Functional Theory , 1999 .

[8]  Wendin,et al.  Many-electron effects in BaC60: Collective response and molecular effects in optical conductivity and photoionization. , 1993, Physical review. B, Condensed matter.

[9]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[10]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[11]  G. F. Bertsch,et al.  Optical response of small silver clusters , 1999, physics/9903041.

[12]  H. Ågren,et al.  The hyperpolarizability dispersion of para-nitroaniline , 1993 .

[13]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[14]  H. Ågren,et al.  Direct atomic orbital based self‐consistent‐field calculations of nonlinear molecular properties. Application to the frequency dependent hyperpolarizability of para‐nitroaniline , 1993 .

[15]  M. Head‐Gordon,et al.  Configuration interaction singles, time-dependent Hartree-Fock, and time-dependent density functional theory for the electronic excited states of extended systems , 1999 .

[16]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[17]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[18]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[19]  J. G. Snijders,et al.  Time-dependent density functional result for the dynamic hyperpolarizabilities of C60. , 1997 .

[20]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[21]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[22]  David P. Shelton,et al.  Problems in the comparison of theoretical and experimental hyperpolarizabilities , 1992 .

[23]  J. Autschbach,et al.  Calculating molecular electric and magnetic properties from time-dependent density functional response theory , 2002 .

[24]  D. Salahub,et al.  Asymptotic correction approach to improving approximate exchange–correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra , 2000 .

[25]  Michel Dupuis,et al.  Electron correlation effects in hyperpolarizabilities of p-nitroaniline , 1993 .

[26]  J. G. Snijders,et al.  Implementation of time-dependent density functional response equations , 1999 .

[27]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[28]  Yi Luo,et al.  Modeling of dynamic molecular solvent properties using local and cavity field approaches , 2000 .

[29]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[30]  Trygve Helgaker,et al.  Four‐component relativistic Kohn–Sham theory , 2002, J. Comput. Chem..

[31]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[32]  H. Ågren,et al.  Solvent induced polarizabilities and hyperpolarizabilities of para‐nitroaniline studied by reaction field linear response theory , 1994 .

[33]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[34]  N. Rösch,et al.  An efficient method for calculating molecular excitation energies by time-dependent density-functional theory , 2000 .

[35]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[37]  A. F. Garito,et al.  Dispersion of the nonlinear second-order optical susceptibility of organic systems (A) , 1983 .

[38]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[39]  N. Rösch,et al.  Density- and density-matrix-based coupled Kohn–Sham methods for dynamic polarizabilities and excitation energies of molecules , 1999 .

[40]  Trygve Helgaker,et al.  Hartree–Fock and Kohn–Sham atomic-orbital based time-dependent response theory , 2000 .

[41]  P. Prasad,et al.  Nonlinear optical properties of p‐nitroaniline: An ab initio time‐dependent coupled perturbed Hartree–Fock study , 1991 .

[42]  Görling,et al.  Density-functional theory for excited states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  G. Wendin Generalization of the RPAE: 4d-photoabsorption in atomic Ba including relaxation effects , 1975 .

[44]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[45]  Julia E. Rice,et al.  The calculation of frequency‐dependent polarizabilities as pseudo‐energy derivatives , 1991 .

[46]  E. Donley,et al.  A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements , 1998 .

[47]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[48]  Mark A. Ratner,et al.  Large Molecular Hyperpolarizabilities in “Push−Pull” Porphyrins. Molecular Planarity and Auxiliary Donor−Acceptor Effects , 1998 .

[49]  Á. Nagy,et al.  Density functional. Theory and application to atoms and molecules , 1998 .

[50]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[51]  Filipp Furche,et al.  On the density matrix based approach to time-dependent density functional response theory , 2001 .

[52]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[53]  Malcolm J. Stott,et al.  Linear-response theory within the density-functional formalism: Application to atomic polarizabilities , 1980 .

[54]  J. G. Snijders,et al.  Efficient real-space approach to time-dependent density functional theory for the dielectric response of nonmetallic crystals , 2000 .

[55]  K. Tsemekhman,et al.  Single and double photoionisation in Xe and Ba above the 4d threshold , 1990 .

[56]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[57]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[58]  Fabio Della Sala,et al.  Efficient methods to calculate dynamic hyperpolarizability tensors by time-dependent density-functional theory , 2002 .

[59]  Nicholas C. Handy,et al.  On the determination of excitation energies using density functional theory , 2000 .

[60]  Trygve Helgaker,et al.  Analytical calculation of nuclear magnetic resonance indirect spin–spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory , 2000 .

[61]  Benoît Champagne,et al.  Assessment of Conventional Density Functional Schemes for Computing the Polarizabilities and Hyperpolarizabilities of Conjugated Oligomers: An Ab Initio Investigation of Polyacetylene Chains , 1998 .

[62]  H. Ågren,et al.  Vibrational corrections to static and dynamic hyperpolarizabilities of pure liquids : Calculations on methanol , 1998 .