Structural Equivalence and ET0L Grammars

For a given context-sensitive grammar G we construct ET0L grammars G1 and G2 that are structurally equivalent if and only if the language generated by G is empty, which implies that structural equivalence is undecidable for ET0L grammars. This is in contrast to the decidability result for the E0L case. In fact, we show that structural equivalence is undecidable for propagating ET0L grammars even when the number of tables is restricted to be at most two. A stronger notion of equivalence that requires the sets of syntax trees to be isomorphic is shown to be decidable for ET0L grammars.

[1]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[2]  Martti Penttonen,et al.  One-Sided and Two-Sided Context in Formal Grammars , 1974, Inf. Control..

[3]  Alfred V. Aho,et al.  Currents In The Theory Of Computing , 1973 .

[4]  Sven Skyum,et al.  Complexity of Some Problems Concerning L Systems , 1977, ICALP.

[5]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[6]  Derick Wood,et al.  Standard Generalized Markup Language: Mathematical and Philosophical Issues , 1995, Computer Science Today.

[7]  Valtteri Niemi A normal form for structurally equivalent E0L grammars , 1992 .

[8]  Derick Wood,et al.  Complexity of E0L Structural Equivalence , 1995, RAIRO Theor. Informatics Appl..

[9]  Robert McNaughton,et al.  Parenthesis Grammars , 1967, JACM.

[10]  Derick Wood,et al.  Theory of computation , 1986 .

[11]  Seymour Ginsburg,et al.  Bracketed Context-Free Languages , 1967, J. Comput. Syst. Sci..

[12]  Stephen H. Unger,et al.  Structural Equivalence of Context-Free Grammars , 1968, J. Comput. Syst. Sci..

[13]  james w.thatcher,et al.  tree automata: an informal survey , 1974 .

[14]  James W. Thatcher,et al.  Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata Theory , 1967, J. Comput. Syst. Sci..

[15]  Sheng Yu,et al.  Decidability of Structural Equivalence of E0L Grammars , 1991, Theor. Comput. Sci..

[16]  Derick Wood,et al.  Defining families of trees with E0L grammars , 1991, Discret. Appl. Math..

[17]  Derick Wood,et al.  Simplifications of E0L Grammars , 1992 .