Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems

We investigate how to adapt the Q-Arnoldi method for the case of symmetric quadratic eigenvalue problems, that is, we are interested in computing a few eigenpairs $$(\lambda ,x)$$(λ,x) of $$(\lambda ^2M+\lambda C+K)x=0$$(λ2M+λC+K)x=0 with M, C, K symmetric $$n\times n$$n×n matrices. This problem has no particular structure, in the sense that eigenvalues can be complex or even defective. Still, symmetry of the matrices can be exploited to some extent. For this, we perform a symmetric linearization $$Ay=\lambda By$$Ay=λBy, where A, B are symmetric $$2n\times 2n$$2n×2n matrices but the pair (A, B) is indefinite and hence standard Lanczos methods are not applicable. We implement a symmetric-indefinite Lanczos method and enrich it with a thick-restart technique. This method uses pseudo inner products induced by matrix B for the orthogonalization of vectors (indefinite Gram-Schmidt). The projected problem is also an indefinite matrix pair. The next step is to write a specialized, memory-efficient version that exploits the block structure of A and B, referring only to the original problem matrices M, C, K as in the Q-Arnoldi method. This results in what we have called the Q-Lanczos method. Furthermore, we define a stabilized variant analog of the TOAR method. We show results obtained with parallel implementations in SLEPc.

[1]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[2]  Karl Meerbergen,et al.  The Lanczos Method with Semi-Definite Inner Product , 2001 .

[3]  Karl Meerbergen,et al.  The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2008, SIAM J. Matrix Anal. Appl..

[4]  P. Lancaster Linearization of regular matrix polynomials , 2008 .

[5]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[6]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[7]  CARMEN CAMPOS,et al.  Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc , 2016, SIAM J. Sci. Comput..

[8]  Peter Lancaster,et al.  Rayleigh-Ritz and Lanczos methods for symmetric matrix pencils , 1993 .

[9]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[10]  Dario Bini,et al.  The Ehrlich-Aberth Method for the Nonsymmetric Tridiagonal Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[11]  Paul Van Dooren,et al.  Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..

[12]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[13]  Ricardo L. Soto,et al.  Nonnegative matrices with prescribed elementary divisors , 2008 .

[14]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[15]  Daniel Kressner,et al.  An indefinite variant of LOBPCG for definite matrix pencils , 2014, Numerical Algorithms.

[16]  A. Bultheel,et al.  Implicitly restarting Lanczos , 1998 .

[17]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[18]  Z. Jia,et al.  SHIRRA: A REFINED VARIANT OF SHIRA FOR THE SKEW-HAMILTONIAN/HAMILTONIAN (SHH) PENCIL EIGENVALUE PROBLEM , 2013 .

[19]  Françoise Tisseur,et al.  Tridiagonal-Diagonal Reduction of Symmetric Indefinite Pairs , 2004, SIAM J. Matrix Anal. Appl..

[20]  David S. Watkins,et al.  The matrix eigenvalue problem - GR and Krylov subspace methods , 2007 .

[21]  Peter Benner,et al.  Solving Large-Scale Quadratic Eigenvalue Problems with Hamiltonian eigenstructure using a Structure-Preserving Krylov Subspace Method , 2008 .

[22]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[23]  Andrés Tomás,et al.  Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement , 2007, Parallel Comput..

[24]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[25]  D. Day,et al.  An Efficient Implementation of the Nonsymmetric Lanczos Algorithm , 1997 .

[26]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[27]  Beresford N. Parlett,et al.  Use of indefinite pencils for computing damped natural modes , 1990 .

[28]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[29]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[30]  Daniel Kressner,et al.  Memory‐efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis , 2014, Numer. Linear Algebra Appl..