To effectively design the vibrating flow pump (VFP) for left ventricular assist device, the numerical codes were developed for three-dimensional blood flow based on the finite volume method. The numerical codes were also developed based on the artificial compressibility method by the use of unstructured grid. Three-dimensional numerical computations and the visualizations were made for flow patterns in the casing of VFP, which were closely connected with hemolysis and blood coagulation. We examined the three different inlet conditions, i.e., radial flow, flow considering the 2nd vibration mode of the jellyfish valve motion, and the swirling flow, to explore the suitable condition for preventing the hemolysis and the blood coagulation. It was found that the swirling flow could effectively decrease hemolysis. The effect of rheology model of the blood flow was also studied in detail.Copyright © 2002 by ASME