Nanoscale MOSFET Modeling: Part 2: Using the Inversion Coefficient as the Primary Design Parameter

This article illustrates the use of the inversion coefficient (IC) as the main design parameter to explore the various tradeoffs faced in the design of analog circuits. We start with showing that the same transconductance, gain-bandwidth (GBW) product, or input-referred thermal noise resistance of a common-source (CS) amplifier can be achieved with lower current by shifting the IC toward moderate inversion (MI) at the cost of a slight increase of the transistor aspect ratio and area. In such case the self-loading gate capacitance cannot be ignored, and accounting for it introduces a minimum bias current at an IC that lies in the middle of the MI to achieve a given GBW.

[1]  Anurag Mangla,et al.  Modeling nanoscale quasi-ballistic MOS transistors , 2014 .

[2]  Christian Enz,et al.  Nanoscale MOSFET modeling for the design of low-power analog and RF circuits , 2016, 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems.

[3]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[4]  Christian Enz,et al.  Nanoscale MOSFET Modeling: Part 1: The Simplified EKV Model for the Design of Low-Power Analog Circuits , 2017, IEEE Solid-State Circuits Magazine.

[5]  Ali M. Niknejad,et al.  BSIM6: Analog and RF Compact Model for Bulk MOSFET , 2014, IEEE Transactions on Electron Devices.

[6]  Maria-Anna Chalkiadaki,et al.  Characterization and modeling of nanoscale MOSFET for ultra-low power RF IC design , 2016 .

[7]  Christian Enz,et al.  Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design , 2006 .

[8]  Yann Deval,et al.  Design methodology for ultra low-power analog circuits using next generation BSIM6 MOSFET compact model , 2013, Microelectron. J..

[9]  Christian Enz,et al.  Design of ultra low-power RF oscillators based on the inversion coefficient methodology using BSIM6 model , 2016, Int. J. Circuit Theory Appl..

[10]  D.M. Binkley,et al.  Tradeoffs and Optimization in Analog CMOS Design , 2008, 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems.

[11]  E. Vittoz,et al.  Charge-Based MOS Transistor Modeling , 2006 .

[12]  Thierry Melly Conception d'un émetteur-récepteur à faible consommation intégré en technologie CMOS , 2000 .

[13]  Christian C. Enz,et al.  Analysis of power consumption in LC oscillators based on the inversion coefficient , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[14]  Christian Enz,et al.  Nanoscale MOSFET modeling for low-power RF design using the inversion coefficient , 2015, 2015 Asia-Pacific Microwave Conference (APMC).

[15]  Christian C. Enz,et al.  RF Small-Signal and Noise Modeling Including Parameter Extraction of Nanoscale MOSFET From Weak to Strong Inversion , 2015, IEEE Transactions on Microwave Theory and Techniques.

[16]  Christian C. Enz,et al.  Low-power analog/RF circuit design based on the inversion coefficient , 2015, ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC).

[17]  P. Heydari,et al.  Ultra-low power RFIC design using moderately inverted MOSFETs: an analytical/experimental study , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[18]  Willy Sansen,et al.  Minimum Power in Analog Amplifying Blocks: Presenting a Design Procedure , 2015, IEEE Solid-State Circuits Magazine.

[19]  Y. Deval,et al.  A 60µW LNA for 2.4 GHz wireless sensors network applications , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[20]  C. C. Enz,et al.  Figure-of-merit for optimizing the current-efficiency of low-power RF circuits , 2011, Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011.