Embedding problem of fuzzy number space: part II
暂无分享,去创建一个
[1] E. Hille. Functional Analysis And Semi-Groups , 1948 .
[2] H. Rådström. An embedding theorem for spaces of convex sets , 1952 .
[3] F. Riesz,et al. Leçons d,analyse fonctionnelle , 1953 .
[4] G. Klambauer. Mathematical Analysis , 1975 .
[5] Siegfried Gottwald,et al. Applications of Fuzzy Sets to Systems Analysis , 1975 .
[6] C. Castaing,et al. Convex analysis and measurable multifunctions , 1977 .
[7] A. Wilansky. Modern Methods in Topological Vector Spaces , 1978 .
[8] Hung T. Nguyen,et al. A note on the extension principle for fuzzy sets , 1978 .
[9] H. Bergström,et al. Weak convergence of measures , 1982 .
[10] M. Puri,et al. Differentials of fuzzy functions , 1983 .
[11] R. Goetschel,et al. Topological properties of fuzzy numbers , 1983 .
[12] M. Puri,et al. DIFFERENTIAL FOR FUZZY FUNCTION , 1983 .
[13] R. Goetschel,et al. Elementary fuzzy calculus , 1986 .
[14] M. Puri,et al. Fuzzy Random Variables , 1986 .
[15] M. Matloka,et al. ON FUZZY INTEGRALS , 1987 .
[16] Osmo Kaleva. Fuzzy differential equations , 1987 .
[17] R. Badard. Comparison of topological and uniform structures for fuzzy numbers and the fixed point problem , 1987 .
[18] Osmo Kaleva. The Cauchy problem for fuzzy differential equations , 1990 .