Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells

GaAs-based solar cells containing stacked layers of nanostructured type II GaSb quantum ring solar cells are reported which show significantly enhanced infrared photo-response extending out to 1400 nm. The ring formation reduces the net strain energy associated with the large lattice mismatch making it possible to stack multi-layers without the need for strain balancing. The (1 sun) short-circuit current for a 10 layer sample is enhanced by ∼6% compared to a GaAs control cell. The corresponding open-circuit voltage of 0.6 V is close to the theoretical maximum expected from such structures.

[1]  A. Freundlich,et al.  Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells , 2006 .

[2]  F. Dinelli,et al.  GaSb quantum dot morphology for different growth temperatures and the dissolution effect of the GaAs capping layer , 2010 .

[3]  Pm Paul Koenraad,et al.  Optical observation of single-carrier charging in type-II quantum ring ensembles , 2012 .

[4]  R. Raffaelle,et al.  Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells , 2011 .

[5]  S. Forrest,et al.  Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. , 2007, Nano letters.

[6]  Geoffrey S. Kinsey,et al.  Advances in High-Efficiency III-V Multijunction Solar Cells , 2007 .

[7]  Christopher G. Bailey,et al.  Effect of strain compensation on quantum dot enhanced GaAs solar cells , 2008 .

[8]  Vladimir Mitin,et al.  Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. , 2011, Nano letters.

[9]  R. Raffaelle,et al.  Multi-Junction Solar Cell Spectral Tuning with Quantum Dots , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[10]  Jamie D. Phillips,et al.  Thermal emission in type-II GaSb/GaAs quantum dots and prospects for intermediate band solar energy conversion , 2012 .

[11]  Neal G. Anderson,et al.  Ideal theory of quantum well solar cells , 1995 .

[12]  Yoshinobu Okano,et al.  Highly stacked and well-aligned In0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8As cap layer , 2010 .

[13]  Huiyun Liu,et al.  Coulomb-induced emission dynamics and self-consistent calculations of type-II Sb-containing quantum dot systems , 2012 .

[14]  T. Ben,et al.  Tuning the properties of exciton complexes in self-assembled GaSb/GaAs quantum rings , 2011 .

[15]  D. Ritchie,et al.  Quantum ring formation and antimony segregation in GaSb∕GaAs nanostructures , 2008 .

[16]  Antonio Luque,et al.  Type II broken band heterostructure quantum dot to obtain a material for the intermediate band solar cell , 2002 .

[17]  Diana L. Huffaker,et al.  GaSb∕GaAs type II quantum dot solar cells for enhanced infrared spectral response , 2007 .