Viscosity Measurement Monitoring by Means of Functional Approximation and Rule Based Techniques

A diagnosis strategy using neural network based functional approximation models associated to a rule based technique is developed. The aim is to apply the diagnostic task on condition monitoring of viscometers used in liquids handling (liquid fuels and lubricating oils) tasks. Based on fluid online measured data, including pressures and temperature, the viscometers diagnosis is being carried out. Required signals are achieved by conversion of available or measured data (fluid temperature and API and SAE grades) into virtual data by means of neural network functional approximation techniques. Using rule based techniques on fault finding and isolation task, it is concluded that the viscometer monitoring task carried out by the analysis of the dynamic behaviour of both, the on line viscometer and virtual data subjected to the analysis of residuals into a parity space approach, is successfully feasible.

[1]  Mikel Larrea,et al.  A Neuro-genetic Control Scheme Application for Industrial R3 Workspaces , 2010, HAIS.

[2]  Ponnuthurai N. Suganthan,et al.  Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization , 2011, Inf. Sci..

[3]  Carlos Manuel Astorga Zaragoza,et al.  DIAGNÓSTICO DE FALLAS BASADO EN UN FILTRO DESACOPLADO PARA SISTEMAS NO LINEALES REPRESENTADOS POR UN ENFOQUE MULTI-MODELOS , 2010 .

[4]  George Gabriel Stokes,et al.  Mathematical and Physical Papers vol.1: On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids , 2009 .

[5]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[6]  Emilio Corchado,et al.  Editorial: New trends and applications on hybrid artificial intelligence systems , 2012, Neurocomputing.

[7]  Emilio Corchado,et al.  Soft computing models to identify typical meteorological days , 2011, Log. J. IGPL.

[8]  Edgar Dutra Zanotto,et al.  Pressure dependence of viscosity. , 2005, The Journal of chemical physics.

[9]  Kay Chen Tan,et al.  Neural Networks: Computational Models and Applications , 2007 .

[10]  Morton M. Denn,et al.  Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer , 2008 .

[11]  W. H. Boyes,et al.  Instrumentation reference book , 2003 .

[12]  Eloy Irigoyen,et al.  GENNET-Toolbox: An Evolving Genetic Algorithm for Neural Network Training , 2010, HAIS.

[13]  Terrence L. Fine,et al.  Feedforward Neural Network Methodology , 1999, Information Science and Statistics.

[14]  Emilio Corchado,et al.  A soft computing method for detecting lifetime building thermal insulation failures , 2010, Integr. Comput. Aided Eng..

[15]  Ramón Ferreiro García,et al.  FDI and Accommodation Using NN Based Techniques , 2010, HAIS.

[16]  Carl Barus,et al.  Isothermals, isopiestics and isometrics relative to viscosity , 1893, American Journal of Science.

[17]  Emilio Corchado,et al.  Hybrid intelligent algorithms and applications , 2010, Inf. Sci..

[18]  Ajith Abraham Editorial - Hybrid Soft Computing and Applications , 2009, Int. J. Comput. Intell. Appl..

[19]  Michael Renardy,et al.  Parallel shear flows of fluids with a pressure-dependent viscosity , 2003 .

[20]  G.S. May,et al.  Neural network-based real-time malfunction diagnosis of reactive ion etching using in situ metrology data , 2004, IEEE Transactions on Semiconductor Manufacturing.

[21]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[22]  Leszek Rutkowski,et al.  New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing , 2004 .

[23]  Juan M. Corchado,et al.  Hybrid learning machines , 2009, Neurocomputing.

[24]  Velásquez Henao,et al.  NEUROSCHEME: A MODELING LANGUAGE FOR ARTIFICIAL NEURAL NETWORKS , 2005 .

[25]  Morton M. Denn Polymer Melt Processing: Subject Index , 2008 .

[26]  Witold Pedrycz,et al.  Logic-oriented neural networks for fuzzy neurocomputing , 2009, Neurocomputing.

[27]  Kumbakonam R. Rajagopal,et al.  On implicit constitutive theories for fluids , 2006, Journal of Fluid Mechanics.

[28]  Rodrigo Correa,et al.  LEVITACIÓN MAGNÉTICA EN FLUIDOS DE ALTA VISCOSIDAD Y DENSIDAD , 2010 .