Computing Arnol′d tongue scenarios
暂无分享,去创建一个
[1] G. Vegter,et al. Algorithms for computing normally hyperbolic invariant manifolds , 1997 .
[2] Alain Chenciner,et al. Bifurcations De Points Fixes Elliptiques , 1985 .
[3] Alain Chenciner,et al. Bifurcations de points fixes elliptiques. II. Orbites periodiques et ensembles de Cantor invariants , 1985 .
[4] J. Guckenheimer. ONE‐DIMENSIONAL DYNAMICS * , 1980 .
[5] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[6] George Huitema,et al. Quasi-periodic motions in families of dynamical systems , 1996 .
[7] M. van Veldhuizen. A new algorithm for the numerical approximation of an invariant curve , 1987 .
[8] Bernd Krauskopf,et al. Strong resonances and Takens’s Utrecht preprint , 2001 .
[9] Carles Simó,et al. Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .
[10] E. Castell. On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem , 1999 .
[11] Ioannis G. Kevrekidis,et al. Bananas and banana splits: a parametric degeneracy in the Hopf bifurcation for maps , 1995 .
[12] Glen R. Hall,et al. Resonance Zones in Two-Parameter Families of Circle Homeomorphisms , 1984 .
[13] Rafael de la Llave,et al. A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .
[14] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[15] Rutherford Aris,et al. Numerical computation of invariant circles of maps , 1985 .
[16] F. Takens. Forced oscillations and bifurcations , 2001 .
[17] Luca Dieci,et al. Computation of invariant tori by the method of characteristics , 1995 .
[18] D. Aronson,et al. Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .
[19] H. Broer,et al. Global Analysis of Dynamical Systems , 2001 .
[20] C. Kaas-Petersen,et al. Computation of quasi-periodic solutions of forced dissipative systems II , 1986 .
[21] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[22] Richard McGehee,et al. Resonance Surfaces for Forced Oscillators , 1994, Exp. Math..
[23] J. Craggs. Applied Mathematical Sciences , 1973 .
[24] Martin Golubitsky,et al. The geometry of resonance tongues: a singularity theory approach , 2003 .
[25] Frank Schilder,et al. Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..
[26] Harry Dankowicz,et al. A Newton Method for Locating Invariant Tori of Maps , 2006, Int. J. Bifurc. Chaos.
[27] P. Holmes,et al. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators , 1980 .
[28] G. B. Huitema,et al. Unfolding and bifurcations of quasi-periodic tori. I: Unfolding of quasi-periodic tori , 1990 .
[29] Boris Hasselblatt,et al. A First Course in Dynamics: with a Panorama of Recent Developments , 2003 .
[30] G. Moore,et al. Geometric methods for computing invariant manifolds , 1995 .
[31] Bruce B. Peckham,et al. The necessity of the Hopf bifurcation for periodically forced oscillators , 1990 .
[32] George Huitema,et al. Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .
[34] Àlex Haro,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..
[35] Philip Boyland,et al. Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals , 1986 .
[36] Richard McGehee,et al. ARNOLD FLAMES AND RESONANCE SURFACE FOLDS , 1996 .
[37] Àngel Jorba,et al. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .
[38] Frank Schilder. Algorithms for Arnol'd tongues and quasi-periodic tori : a case study , 2005 .
[39] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .