Computing Arnol′d tongue scenarios

A famous phenomenon in circle-maps and synchronisation problems leads to a two-parameter bifurcation diagram commonly referred to as the Arnol'd tongue scenario. One considers a perturbation of a rigid rotation of a circle, or a system of coupled oscillators. In both cases we have two natural parameters, the coupling strength and a detuning parameter that controls the rotation number/frequency ratio. The typical parameter plane of such systems has Arnol'd tongues with their tips on the decoupling line, opening up into the region where coupling is enabled, and in between these Arnol'd tongues, quasi-periodic arcs. In this paper, we present unified algorithms for computing both Arnol'd tongues and quasi-periodic arcs for both maps and ODEs. The algorithms generalise and improve on the standard methods for computing these objects. We illustrate our methods by numerically investigating the Arnol'd tongue scenario for representative examples, including the well-known Arnol'd circle map family, a periodically forced oscillator caricature, and a system of coupled Van der Pol oscillators.

[1]  G. Vegter,et al.  Algorithms for computing normally hyperbolic invariant manifolds , 1997 .

[2]  Alain Chenciner,et al.  Bifurcations De Points Fixes Elliptiques , 1985 .

[3]  Alain Chenciner,et al.  Bifurcations de points fixes elliptiques. II. Orbites periodiques et ensembles de Cantor invariants , 1985 .

[4]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[5]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[6]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[7]  M. van Veldhuizen A new algorithm for the numerical approximation of an invariant curve , 1987 .

[8]  Bernd Krauskopf,et al.  Strong resonances and Takens’s Utrecht preprint , 2001 .

[9]  Carles Simó,et al.  Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .

[10]  E. Castell On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem , 1999 .

[11]  Ioannis G. Kevrekidis,et al.  Bananas and banana splits: a parametric degeneracy in the Hopf bifurcation for maps , 1995 .

[12]  Glen R. Hall,et al.  Resonance Zones in Two-Parameter Families of Circle Homeomorphisms , 1984 .

[13]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[14]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  Rutherford Aris,et al.  Numerical computation of invariant circles of maps , 1985 .

[16]  F. Takens Forced oscillations and bifurcations , 2001 .

[17]  Luca Dieci,et al.  Computation of invariant tori by the method of characteristics , 1995 .

[18]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[19]  H. Broer,et al.  Global Analysis of Dynamical Systems , 2001 .

[20]  C. Kaas-Petersen,et al.  Computation of quasi-periodic solutions of forced dissipative systems II , 1986 .

[21]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[22]  Richard McGehee,et al.  Resonance Surfaces for Forced Oscillators , 1994, Exp. Math..

[23]  J. Craggs Applied Mathematical Sciences , 1973 .

[24]  Martin Golubitsky,et al.  The geometry of resonance tongues: a singularity theory approach , 2003 .

[25]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[26]  Harry Dankowicz,et al.  A Newton Method for Locating Invariant Tori of Maps , 2006, Int. J. Bifurc. Chaos.

[27]  P. Holmes,et al.  Bifurcation of periodic motions in two weakly coupled van der Pol oscillators , 1980 .

[28]  G. B. Huitema,et al.  Unfolding and bifurcations of quasi-periodic tori. I: Unfolding of quasi-periodic tori , 1990 .

[29]  Boris Hasselblatt,et al.  A First Course in Dynamics: with a Panorama of Recent Developments , 2003 .

[30]  G. Moore,et al.  Geometric methods for computing invariant manifolds , 1995 .

[31]  Bruce B. Peckham,et al.  The necessity of the Hopf bifurcation for periodically forced oscillators , 1990 .

[32]  George Huitema,et al.  Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .

[34]  Àlex Haro,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..

[35]  Philip Boyland,et al.  Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals , 1986 .

[36]  Richard McGehee,et al.  ARNOLD FLAMES AND RESONANCE SURFACE FOLDS , 1996 .

[37]  Àngel Jorba,et al.  Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .

[38]  Frank Schilder Algorithms for Arnol'd tongues and quasi-periodic tori : a case study , 2005 .

[39]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .