Asymptotic Analysis of a Linear Isotropic Elastic Composite Reinforced by a Thin Layer of Periodically Distributed Isotropic Parallel Stiff Fibres

We present some mathematical convergence results using a two-scale method for a linear elastic isotropic medium containing one layer of parallel periodically distributed heterogeneities located in the interior of the whole domain around a plane surface Σ. The aim of this paper is to study the situation when the rigidity of the linearly isotropic elastic fibres is 1/εm the rigidity of the surrounding linearly isotropic elastic material. We use a two-scale convergence method adapted to the geometry of the problem (layer of fibres). In the models obtained Σ behaves for m=1 as a “material surface” without membrane energy in the direction of the plane orthogonal to the direction of the fibres. For m=3 the “material surface” has no bending energy in the direction orthogonal to the fibres.

[1]  Michel Bellieud,et al.  A Notion of Capacity Related to Elasticity: Applications to Homogenization , 2012 .

[2]  F. Murat,et al.  Effets non locaux dans le passage en élasticité linéarisée anisotrope hétérogène , 2000 .

[3]  Peter Wall,et al.  Two-scale convergence , 2002 .

[4]  Towards a two-scale calculus , 2006 .

[5]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[6]  Guy Bouchitté,et al.  Homogenization of a soft elastic material reinforced by fibers , 2002 .

[7]  S. Lenci,et al.  Analysis of interfaces of variable stiffness , 2000 .

[8]  D. Lukkassen,et al.  Two-scale convergence with respect to measures and homogenization of monotone operators , 2005 .

[9]  G. Allaire Homogenization and two-scale convergence , 1992 .

[10]  A. Bessoud,et al.  Plate-like and shell-like inclusions with high rigidity , 2008 .

[11]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[12]  Philipp Emanuel Stelzig On problems in homogenization and two-scale convergence , 2012 .

[13]  V. Zhikov,et al.  On an extension of the method of two-scale convergence and its applications , 2000 .

[14]  O. Oleinik,et al.  Mathematical Problems in Elasticity and Homogenization , 2012 .

[15]  Françoise Krasucki,et al.  Asymptotic Analysis of Shell-like Inclusions with High Rigidity , 2011 .

[16]  Василий Васильевич Жиков,et al.  Об одном расширении и применении метода двухмасштабной сходимости@@@On an extension of the method of two-scale convergence and its applications , 2000 .

[17]  Jean-Jacques Marigo,et al.  The Effective Behavior of Elastic Bodies Containing Microcracks or Microholes Localized on a Surface , 2011 .

[18]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[19]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[20]  Stéphane Roux,et al.  On the Identification and Validation of an Anisotropic Damage Model Using Full-field Measurements , 2011 .

[21]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[22]  P. Donato,et al.  An introduction to homogenization , 2000 .

[23]  Gérard Michaille,et al.  Multi-materials with strong interface: Variational modelings , 2009, Asymptot. Anal..

[24]  S. Neukamm Rigorous Derivation of a Homogenized Bending-Torsion Theory for Inextensible Rods from Three-Dimensional Elasticity , 2012 .

[25]  Kirill Cherednichenko,et al.  Two-Scale Γ-Convergence of Integral Functionals and its Application to Homogenisation of Nonlinear High-Contrast Periodic Composites , 2012 .

[26]  Guy Bouchitté,et al.  Homogenization of Thin Structures by Two-Scale Method with Respect to Measures , 2001, SIAM J. Math. Anal..

[27]  E. Ya. Khruslov,et al.  Homogenized Models of Composite Media , 1991 .

[28]  Stefan Neukamm,et al.  RIGOROUS DERIVATION OF A HOMOGENIZED BENDING-TORSION THEORY FOR INEXTENSIBLE RODS FROM 3D ELASTICITY , 2011 .

[29]  Michel Bellieud Torsion Effects in Elastic Composites with High Contrast , 2009, SIAM J. Math. Anal..

[30]  Stefano Lenci,et al.  Mathematical Analysis of a Bonded Joint with a Soft Thin Adhesive , 1999 .

[31]  Isabelle Gruais,et al.  Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects , 2005 .

[32]  Todd Arbogast,et al.  Derivation of the double porosity model of single phase flow via homogenization theory , 1990 .

[33]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[34]  P. Ladevèze Local effects in the analysis of structures , 1985 .

[35]  Michel Bellieud Problèmes capacitaires en viscoplasticité avec effets de torsion , 2013 .

[36]  F. Murat,et al.  Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces* , 1999 .

[37]  J. Marigo,et al.  The effective behavior of a fiber bridged crack , 2000 .

[38]  E. Sánchez-Palencia,et al.  Stress Concentration for Defects Distributed Near a Surface , 1985 .