Natriuretic Peptides: Update on Peptide Release, Bioactivity, and Clinical Use

In the 25 years since de Bold et al demonstrated the existence of an atrial natriuretic factor, investigation of the cardiac natriuretic peptides has produced a maturing knowledge base1,2 identifying the cardiac peptides and addressing stimuli for secretion of atrial (ANP) and B-type (BNP) natriuretic peptides, the processing and release of the mature bioactive carboxy terminal peptides, together with their propeptides and amino terminal fragments, the nature of natriuretic peptide receptors, and the bioactivities of natriuretic peptides (including natriuresis, vasodilatation, suppression of renin–angiotensin–aldosterone and sympathetic nervous activity, and trophic effects inhibiting vascular and cardiac hypertrophy and fibrosis). Less is known of the more recently discovered C-type natriuretic peptide (CNP and its cosecreted amino-terminal peptide, NTproCNP).3,4 Increasingly, measurements of the B-type peptides have found diagnostic and prognostic application in cardiovascular disease.5–7 The genes for ANP and BNP are in tandem on human chromosome 1.8 Upstream regulatory regions identified for the BNP gene include an AP1 binding site, serum response elements, M-CAT and GATA sites.9,10 Translation results in pre-pro BNP from which a 26 amino acid signal peptide is cleaved to produce the 108 amino acid precursor proBNP. This in turn is processed between amino acid residues 76 and 77 resulting in a 32 amino acid biologically active peptide (BNP) from its carboxy terminal plus the remaining amino terminal peptide sequence (NTproBNP 1 to 76). ANP is synthesized as a 126 amino acid precursor and is stored in granules within atrial tissue.11 During or shortly after secretion, the precursor is processed to an active 28 amino acid carboxy terminal peptide (ANP) and amino terminal ANP (proANP 1 to 98). The amino terminal propeptides NTproANP, NTproBNP, and NTproCNP have no known biological actions. The mature bioactive human forms of ANP, BNP, and CNP all contain a 17 …

[1]  Y. Pinto,et al.  Amino-terminal pro-brain natriuretic Peptide, renal function, and outcomes in acute heart failure: redefining the cardiorenal interaction? , 2006, Journal of the American College of Cardiology.

[2]  J. Monti,et al.  Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Antoni Bayes-Genis,et al.  NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. , 2006, European heart journal.

[4]  R. Doughty,et al.  Comparison of B-type natriuretic peptides for assessment of cardiac function and prognosis in stable ischemic heart disease. , 2006, Journal of the American College of Cardiology.

[5]  R. Doughty,et al.  CHRISTCHURCH CARDIOENDO-CRINE RESEARCH GROUP; AUSTRALIA-NEW ZEALAND HEART FAILURE GROUP. COMPARISON OF BT-YPE NATRIURETIC PEPTIDES FOR ASSESSMENT OF CARDIAC FUNCTION AND PROGNOSIS IN STABLE ISCHEMIC HEART DISEASE , 2006 .

[6]  Jeong-hee Han,et al.  Adenosine-Stimulated Atrial Natriuretic Peptide Release Through A1 Receptor Subtype , 2005, Hypertension.

[7]  T. Jørgensen,et al.  N-Terminal Pro Brain Natriuretic Peptide Is Inversely Related to Metabolic Cardiovascular Risk Factors and the Metabolic Syndrome , 2005, Hypertension.

[8]  K. Nakao,et al.  Role of Natriuretic Peptide Receptor Guanylyl Cyclase-A in Myocardial Infarction Evaluated Using Genetically Engineered Mice , 2005, Hypertension.

[9]  C. Hengstenberg,et al.  Effect of Compensated Renal Dysfunction on Approved Heart Failure Markers: Direct Comparison of Brain Natriuretic Peptide (BNP) and N-Terminal Pro-BNP , 2005, Hypertension.

[10]  A. Hoes,et al.  Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. , 2005, European heart journal.

[11]  M. Woodward,et al.  Prediction of Heart Failure by Amino Terminal-pro–B-Type Natriuretic Peptide and C-Reactive Protein in Subjects With Cerebrovascular Disease , 2005, Hypertension.

[12]  A. Richards,et al.  Cardiac natriuretic peptides for cardiac health. , 2005, Clinical science.

[13]  G. Chang,et al.  Cyclophilin A Functions as an Endogenous Inhibitor for Membrane-Bound Guanylate Cyclase-A , 2004, Hypertension.

[14]  S. Oparil,et al.  Atrial Natriuretic Peptide Dose-Dependently Inhibits Pressure Overload–Induced Cardiac Remodeling , 2004, Hypertension.

[15]  D. Gardner,et al.  Transcriptional Regulation of Type B Human Natriuretic Peptide Receptor Gene Promoter: Dependence on Sp1 , 2004, Hypertension.

[16]  P. Hamet,et al.  Characterization of a cGMP-Response Element in the Guanylyl Cyclase/Natriuretic Peptide Receptor A Gene Promoter , 2004, Hypertension.

[17]  L. Potter,et al.  Sphingosine-1-Phosphate Inhibits C-Type Natriuretic Peptide Activation of Guanylyl Cyclase B (GC-B/NPR-B) , 2004, Hypertension.

[18]  J. McCormick,et al.  Sgk1 Mediates Osmotic Induction of NPR-A Gene in Rat Inner Medullary Collecting Duct Cells , 2004, Hypertension.

[19]  Daniel Levy,et al.  Plasma natriuretic peptide levels and the risk of cardiovascular events and death. , 2004, The New England journal of medicine.

[20]  D. Levy,et al.  Impact of Obesity on Plasma Natriuretic Peptide Levels , 2004, Circulation.

[21]  A. Siani,et al.  Natriuretic peptide clearance receptor alleles and susceptibility to abdominal adiposity. , 2004, Obesity research.

[22]  Jeong-hee Han,et al.  Attenuation of Lysophosphatidylcholine-Induced Suppression of ANP Release From Hypertrophied Atria , 2004, Hypertension.

[23]  R. Dietz,et al.  Forced Homodimerization by Site-Directed Mutagenesis Alters Guanylyl Cyclase Activity of Natriuretic Peptide Receptor B , 2004, Hypertension.

[24]  R. Doughty,et al.  Amino-terminal pro-C-type natriuretic peptide in heart failure. , 2003, Hypertension.

[25]  L. Potter,et al.  Sphingosine-1-Phosphate Inhibits C-Type Natriuretic Peptide Activation of Guanylyl Cyclase B ( GCB / NPR-B ) , 2004 .

[26]  Dajun Wang,et al.  Effects of Pressure Overload on Extracellular Matrix Expression in the Heart of the Atrial Natriuretic Peptide–Null Mouse , 2003, Hypertension.

[27]  J. Hollander,et al.  B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. , 2003, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[28]  O. Vuolteenaho,et al.  GATA4 mediates activation of the B-type natriuretic peptide gene expression in response to hemodynamic stress. , 2001, Endocrinology.

[29]  T. Hla,et al.  Role of the Sphingosine 1-Phosphate Receptor EDG-1 in Vascular Smooth Muscle Cell Proliferation and Migration , 2001, Circulation research.

[30]  M. Kinoshita,et al.  Intravenous atrial natriuretic peptide prevents left ventricular remodeling in patients with first anterior acute myocardial infarction. , 2001, Journal of the American College of Cardiology.

[31]  U. Dohrmann,et al.  Gene Expression of Brain Natriuretic Peptide in Isolated Atrial and Ventricular Human Myocardium: Influence of Angiotensin II and Diastolic Fiber Length , 2000, Circulation.

[32]  D. Gardner,et al.  Integrin Dependence of Brain Natriuretic Peptide Gene Promoter Activation by Mechanical Strain* , 2000, The Journal of Biological Chemistry.

[33]  M. Berlan,et al.  Natriuretic peptides: a new lipolytic pathway in human adipocytes , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  I. Masuda,et al.  Outside-in signalling of fibronectin stimulates cardiomyocyte hypertrophy in cultured neonatal rat ventricular myocytes. , 2000, Journal of molecular and cellular cardiology.

[35]  T. Chrisman,et al.  Reciprocal Antagonism Coordinates C-type Natriuretic Peptide and Mitogen-signaling Pathways in Fibroblasts* , 1999, The Journal of Biological Chemistry.

[36]  M. Lapointe,et al.  Interleukin-1beta regulation of the human brain natriuretic peptide promoter involves Ras-, Rac-, and p38 kinase-dependent pathways in cardiac myocytes. , 1999, Hypertension.

[37]  D. Gardner,et al.  Autocrine/Paracrine Determinants of Strain-activated Brain Natriuretic Peptide Gene Expression in Cultured Cardiac Myocytes* , 1998, The Journal of Biological Chemistry.

[38]  H. S. Kim,et al.  Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Mäntymaa,et al.  Mechanisms of mechanical load-induced atrial natriuretic peptide secretion: role of endothelin, nitric oxide, and angiotensin II , 1997, Journal of Molecular Medicine.

[40]  N. Tamura,et al.  Two cardiac natriuretic peptide genes (atrial natriuretic peptide and brain natriuretic peptide) are organized in tandem in the mouse and human genomes. , 1996, Journal of molecular and cellular cardiology.

[41]  M. Shinomiya,et al.  C-type natriuretic peptide inhibits intimal thickening of rabbit carotid artery after balloon catheter injury. , 1994, Biochemical and biophysical research communications.

[42]  T. Yandle,et al.  Biochemistry of natriuretic peptides , 1994, Journal of internal medicine.

[43]  J. Lewicki,et al.  C-type natriuretic peptide inhibits growth factor-dependent DNA synthesis in smooth muscle cells. , 1992, The American journal of physiology.

[44]  K. Inouye,et al.  Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. , 1991, The Journal of clinical investigation.

[45]  N. Minamino,et al.  C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. , 1990, Biochemical and biophysical research communications.