Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees

The first Zagreb index M"1(G) and the second Zagreb index M"2(G) of a (molecular) graph G are defined as M"1(G)=@?"u"@?"V"("G")(d(u))^2 and M"2(G)=@?"u"v"@?"E"("G")d(u)d(v), where d(u) denotes the degree of a vertex u in G. The AutoGraphiX system [M. Aouchiche, J.M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lachere, A. Monhait, Variable neighborhood search for extremal graphs. 14. The AutoGraphiX 2 system, in: L. Liberti, N. Maculan (Eds.), Global Optimization: From Theory to Implementation, Springer, 2005; G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system, Discrete Math. 212 (2000) 29-44; G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs. 5. Three ways to automate finding conjectures, Discrete Math. 276 (2004) 81-94] conjectured that M"1/n@?M"2/m (where n=|V(G)| and m=|E(G)|) for simple connected graphs. Hansen and Vukicevic [P. Hansen, D. Vukicevic, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007) 165-168] proved that it is true for chemical graphs and it does not hold for all graphs. Vukicevic and Graovac [D. Vukicevic, A. Graovac, Comparing Zagreb M"1 and M"2 indices for acyclic molecules, MATCH Commun. Math. Comput. Chem. 57 (2007) 587-590] proved that it is also true for trees. In this paper, we show that M"1/n@?M"2/m holds for graphs with @D(G)-@d(G)@?2 and characterize the extremal graphs, the proof of which implies the result in [P. Hansen, D. Vukicevic, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007) 165-168]. We also obtain the result that M"1/n@?M"2/m holds for graphs with @D(G)-@d(G)@?3 and @d(G) 2.

[1]  A. Balaban,et al.  Topological Indices for Structure-Activity Correlations , 1983, Steric Effects in Drug Design.

[2]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[3]  I. Gutman,et al.  Graph theory and molecular orbitals. XII. Acyclic polyenes , 1975 .

[4]  Mustapha Aouchiche,et al.  Variable Neighborhood Search for Extremal Graphs 14: The AutoGraphiX 2 System , 2006 .

[5]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1999, Comput. Chem..

[6]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system , 1997, Discret. Math..

[7]  Ante Graovac,et al.  Comparing Zagreb M1 and M2 indices for acyclic molecules , 2007 .

[8]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[9]  Pierre Hansen,et al.  Comparing the Zagreb Indices , 2006 .

[10]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs. 5. Three ways to automate finding conjectures , 2000, Discret. Math..

[11]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[12]  Pierre Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1998, Comput. Chem..

[13]  I. W Nowell,et al.  Molecular Connectivity in Structure-Activity Analysis , 1986 .

[14]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[15]  N. Maculan,et al.  Global optimization : from theory to implementation , 2006 .

[16]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .