Genomic and Genetic Definition of a Functional Human Centromere

The definition of centromeres of human chromosomes requires a complete genomic understanding of these regions. Toward this end, we report integration of physical mapping, genetic, and functional approaches, together with sequencing of selected regions, to define the centromere of the human X chromosome and to explore the evolution of sequences responsible for chromosome segregation. The transitional region between expressed sequences on the short arm of the X and the chromosome-specific alpha satellite array DXZ1 spans about 450 kilobases and is satellite-rich. At the junction between this satellite region and canonical DXZ1 repeats, diverged repeat units provide direct evidence of unequal crossover as the homogenizing force of these arrays. Results from deletion analysis of mitotically stable chromosome rearrangements and from a human artificial chromosome assay demonstrate that DXZ1 DNA is sufficient for centromere function. Evolutionary studies indicate that, while alpha satellite DNA present throughout the pericentromeric region of the X chromosome appears to be a descendant of an ancestral primate centromere, the current functional centromere based on DXZ1 sequences is the product of the much more recent concerted evolution of this satellite DNA.

[1]  H. Willard,et al.  Duplicated zinc finger protein genes on the proximal short arm of the human X chromosome: isolation, characterization and X-inactivation studies. , 1993, Human molecular genetics.

[2]  M. Rosenberg,et al.  Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN. , 1978, Science.

[3]  H. Willard,et al.  Chromosome engineering: generation of mono- and dicentric isochromosomes in a somatic cell hybrid system , 1999, Chromosoma.

[4]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.

[5]  P. Warburton Epigenetic analysis of kinetochore assembly on variant human centromeres. , 2001, Trends in genetics : TIG.

[6]  S. Gimenez,et al.  Site-specific retrotransposition of L1 elements within human alphoid satellite sequences. , 1997, Genomics.

[7]  H. Willard,et al.  Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. , 1985, Nucleic acids research.

[8]  L. Donehower,et al.  Restriction site periodicities in highly repetitive DNA of primates. , 1979, Journal of molecular biology.

[9]  G. Karpen,et al.  Localization of centromere function in a drosophila minichromosome , 1995, Cell.

[10]  H. Willard,et al.  Centromeres: the missing link in the development of human artificial chromosomes. , 1998, Current opinion in genetics & development.

[11]  S. Schwartz,et al.  Molecular definition of breakpoints associated with human Xq isochromosomes: implications for mechanisms of formation. , 1996, American journal of human genetics.

[12]  A. Smit,et al.  Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. , 1995, Journal of molecular biology.

[13]  A. Billault,et al.  Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. , 1999, Genomics.

[14]  H. Willard,et al.  Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: evidence for short-range homogenization of tandemly repeated DNA sequences. , 1989, Genomics.

[15]  Gary H. Karpen,et al.  Determining centromere identity: cyclical stories and forking paths , 2001, Nature Reviews Genetics.

[16]  S. Ohno,et al.  Ancient Linkage Groups and Frozen Accidents , 1973, Nature.

[17]  W. Earnshaw,et al.  Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres , 1996, Molecular and cellular biology.

[18]  H. Willard,et al.  PCR amplification of chromosome-specific alpha satellite DNA: definition of centromeric STS markers and polymorphic analysis. , 1991, Genomics.

[19]  R. Quatrano Genomics , 1998, Plant Cell.

[20]  H. Willard,et al.  Physical and genetic mapping of the human X chromosome centromere: repression of recombination. , 1998, Genome research.

[21]  N. Archidiacono,et al.  Centromere emergence in evolution. , 2001, Genome research.

[22]  H. Willard,et al.  Formation of de novo centromeres and construction of first-generation human artificial microchromosomes , 1997, Nature Genetics.

[23]  Huntington F. Willard,et al.  Hierarchical order in chromosome-specific human alpha satellite DNA , 1987 .

[24]  H. Willard,et al.  Large-insert clone/STS contigs in Xq11-q12, spanning deletions in patients with androgen insensitivity and mental retardation. , 2000, Genomics.

[25]  Ronald W. Davis,et al.  Replication dynamics of the yeast genome. , 2001, Science.

[26]  D. Schindelhauer,et al.  Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. , 2000, Human molecular genetics.

[27]  M. Marra,et al.  Genetic definition and sequence analysis of Arabidopsis centromeres. , 1999, Science.

[28]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[29]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[30]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[31]  J A Bailey,et al.  Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Schwartz,et al.  Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. , 1995, Human molecular genetics.

[33]  E. Eichler,et al.  The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. , 2000, Genome research.

[34]  R. Critcher,et al.  Distribution of gamma satellite DNA on the human X and Y chromosomes suggests that it is not required for mitotic centromere function , 2000, Chromosoma.

[35]  M. Adams,et al.  Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11. , 2000, Human molecular genetics.

[36]  Valery Shepelev,et al.  Alpha-satellite DNA of primates: old and new families , 2001, Chromosoma.

[37]  A. Monaco,et al.  Three genes that escape X chromosome inactivation are clustered within a 6 Mb YAC contig and STS map in Xp11.21-p11.22. , 1995, Human molecular genetics.

[38]  L. Romanova,et al.  Definition of a new alpha satellite suprachromosomal family characterized by monomeric organization. , 1993, Nucleic acids research.