Technique for measuring the dynamic strain on an optical fiber based on Brillouin ring amplification

A new technique for measuring the dynamic strain on an optical fiber, named Brillouin ring amplification system (BRAS), is proposed. In the BRAS, Stokes light of sufficiently high intensity to detect instantaneous strain change can be obtained by the effect of Brillouin ring amplification. Experimental results demonstrate that the BRAS enables a measurement of dynamic strain with a period of about two seconds as well as its spatial distribution over an 11-km long fiber with an accuracy of /spl plusmn/0.006% strain. Theoretical studies on measurable distance indicate that the BRAS can be used in the case of a long fiber of about 40 km with a resolution of twenty meters.

[1]  T. Parker,et al.  Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers , 1998 .

[2]  N. Minkovski,et al.  Extremely transient pulses from a Brillouin fiber laser , 1993, IEEE Photonics Technology Letters.

[3]  T. Horiguchi,et al.  BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory , 1989 .

[4]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[5]  K. Shimizu,et al.  Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers , 1994 .

[6]  K. Hill,et al.  Brillouin optical‐fiber ring oscillator design , 1977 .

[7]  Yahei Koyamada,et al.  The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena , 1994 .

[8]  D. S. Hamilton,et al.  Brillouin scattering measurements on optical glasses , 1979 .

[9]  M. Barnoski,et al.  Fiber waveguides: a novel technique for investigating attenuation characteristics. , 1976, Applied optics.

[10]  R. Stolen,et al.  Nonlinearity in fiber transmission , 1980, Proceedings of the IEEE.

[11]  T. Horiguchi,et al.  Tensile strain dependence of Brillouin frequency shift in silica optical fibers , 1989, IEEE Photonics Technology Letters.

[12]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[13]  T Horiguchi,et al.  Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry. , 1995, Optics letters.

[14]  R. Stolen,et al.  Parametric amplification and frequency conversion in optical fibers , 1982 .

[15]  T. Horiguchi,et al.  A technique to measure distributed strain in optical fibers , 1990, IEEE Photonics Technology Letters.

[16]  J. N. Ross,et al.  Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector , 1985 .

[17]  R. Stolen Polarization effects in fiber Raman and Brillouin lasers , 1979 .

[18]  D. Garcus,et al.  Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements , 1997 .

[19]  Kenneth O. Hill,et al.  Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator (A) , 1978 .

[20]  T. Gogolla,et al.  Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis. , 1996, Optics letters.

[21]  D. Cotter,et al.  Stimulated Brillouin Scattering in Monomode Optical Fiber , 1983 .

[22]  Yahei Koyamada,et al.  Brillouin optical-fiber time domain reflectometry , 1993 .

[23]  T. Horiguchi,et al.  Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers. , 1990, Applied optics.