A SIMPLE INTEGRAL METHOD FOR THE CALCULATION OF THICK AXISYMMETRIC TURBULENT BOUNDARY LAYERS

A simple integral method is described for the calculation of a thick axisymmetric turbulent boundary layer. It is shown that the development of the boundary layer can be predicted with acceptable accuracy by using an approximate form of the momentum-integral equation, an appropriate skin-friction law, and an entrainment equation obtained for axisymmetric boundary layers. The method also involves the explicit use of a velocity profile family in order to interrelate some of the integral parameters. Available experimental results have been used to demonstrate the general accuracy of the method.