Deep learning integrates histopathology and proteogenomics at a pan-cancer level.

Matthew A. Wyczalkowski | Ratna R. Thangudu | Jared L. Johnson | Jasmin H. Bavarva | Sara R. Savage | G. Getz | S. Dhanasekaran | A. Chinnaiyan | L. Yao | E. Schadt | A. Nesvizhskii | B. Reva | G. Hostetter | G. Omenn | S. Jewell | F. Aguet | N. Razavian | Chet Birger | David I. Heiman | Özgün Babur | M. Gillette | A. Paulovich | L. Cantley | M. Anurag | T. Liu | M. Wiznerowicz | K. Ketchum | A. Moreira | M. Birrer | D. Fenyö | A. Tsirigos | A. Lazar | A. Colaprico | M. Thiagarajan | K. Clauser | D. Mani | B. Druker | Yuxing Liao | C. Kumar-Sinha | Zhiao Shi | Weiping Ma | S. Payne | K. Rodland | Yongchao Dou | D. Zhou | Chen Huang | S. Satpathy | Wenke Liu | Yige Wu | Bo Wen | Song Cao | Dmitry Rykunov | Tara Hiltke | K. Ruggles | Bing Zhang | A. Calinawan | Steve Carr | S. Chowdhury | M. Domagalski | Alicia Francis | Y. Geffen | R. Hong | Yingwei Hu | Jiayi Ji | Yize Li | Chelsea J. Newton | F. Petralia | M. Schnaubelt | Liang-Bo Wang | E. Demicco | Joshua M Wang | Wen-Wei Liang | S. Foltz | Vasileios Stathias | S. Schürer | S. Gosline | Felipe da Veiga Leprevost | R. Oldroyd | M. Selvan | M. Ellis | Iga Kołodziejczak | Zhen Zhang | Nadezhda V Terekhanova | N. Tignor | E. Storrs | E. An | Wilson H. McKerrow | Eric J. Jaehnig | Yizhe Song | Pietro Pugliese | Han-Byoul Cho | F. M. Rodrigues | Daniel W. Chan | M. Cieslik | R. Lazcano | A. Iavarone | Emily M. Huntsman | L. Katsnelson | Jimin Tan | Xiaoyu Song | M. Ceccarelli | Henry Rodriguez | Shankara K. Anand | Tania J. González Robles | Tomer M. Yaron | Jonathan T. Lei | Caleb M Lindgren | Li Ding | Xu Zhang | Tobias Schraink | Xinpei Yi | Richard D. Smith | Wen Jiang | Karsten Krug | Ying Wang | Peisen Wang | Hui Zhang | Y. Akiyama | Z. Gümüş | Nathan J. Edwards | Ana I. Robles | Qing Zhang | Corbin Day

[1]  Matthew A. Wyczalkowski,et al.  Proteogenomic data and resources for pan-cancer analysis. , 2023, Cancer cell.

[2]  M. Unberath,et al.  Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review , 2021, npj Digital Medicine.

[3]  Dana R. Valley,et al.  Proteogenomic characterization of pancreatic ductal adenocarcinoma , 2021, Cell.

[4]  Jacob D. Jaffe,et al.  Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds , 2021, Scientific data.

[5]  Dana R. Valley,et al.  A proteogenomic portrait of lung squamous cell carcinoma , 2021, Cell.

[6]  Yuling Luo,et al.  Histopathological image and gene expression pattern analysis for predicting molecular features and prognosis of head and neck squamous cell carcinoma , 2021, Cancer medicine.

[7]  M. Cui,et al.  Artificial intelligence and computational pathology , 2021, Laboratory Investigation.

[8]  Alexander R. Pico,et al.  Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. , 2021, Cancer cell.

[9]  Pierre Courtiol,et al.  A deep learning model to predict RNA-Seq expression of tumours from whole slide images , 2020, Nature Communications.

[10]  Jeffrey R. Whiteaker,et al.  Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma , 2020, Cell.

[11]  Xiaowei Zhuang,et al.  A technical review of canonical correlation analysis for neuroscience applications , 2020, Human brain mapping.

[12]  T. Massoud,et al.  Predicting tumour mutational burden from histopathological images using multiscale deep learning , 2020, Nature Machine Intelligence.

[13]  N. Razavian,et al.  Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models , 2020, bioRxiv.

[14]  D. Fenyö,et al.  Predicting and Visualizing STK11 Mutation in Lung Adenocarcinoma Histopathology Slides Using Deep Learning , 2020, bioRxiv.

[15]  Peter B. McGarvey,et al.  Proteogenomic Characterization of Endometrial Carcinoma , 2020, Cell.

[16]  Anne L. Martel,et al.  Deep neural network models for computational histopathology: A survey , 2019, Medical Image Anal..

[17]  Jakob Nikolas Kather,et al.  Pan-cancer image-based detection of clinically actionable genetic alterations , 2019, Nature Cancer.

[18]  Alexander W. Jung,et al.  Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis , 2019, Nature Cancer.

[19]  Guo Ci Teo,et al.  Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma , 2019, Cell.

[20]  F. Azuaje,et al.  Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning , 2019, bioRxiv.

[21]  C. V. Jawahar,et al.  Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning , 2019, Scientific Reports.

[22]  M. Gurcan,et al.  Digital pathology and artificial intelligence. , 2019, The Lancet. Oncology.

[23]  B. Engelhardt,et al.  Joint analysis of expression levels and histological images identifies genes associated with tissue morphology , 2018, Nature Communications.

[24]  N. Razavian,et al.  Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning , 2018, Nature Medicine.

[25]  Henry Rodriguez,et al.  Revolutionizing Precision Oncology through Collaborative Proteogenomics and Data Sharing , 2018, Cell.

[26]  Steven J. M. Jones,et al.  Oncogenic Signaling Pathways in The Cancer Genome Atlas. , 2018, Cell.

[27]  Icgc,et al.  Pan-cancer analysis of whole genomes , 2017, bioRxiv.

[28]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[29]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[30]  Dayong Wang,et al.  Deep Learning for Identifying Metastatic Breast Cancer , 2016, ArXiv.

[31]  Nassir Navab,et al.  Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images , 2016, IEEE Transactions on Medical Imaging.

[32]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[33]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[35]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[36]  William C. S. Cho,et al.  Proteomics Technologies and Challenges , 2007, Genom. Proteom. Bioinform..