Deep learning integrates histopathology and proteogenomics at a pan-cancer level.
暂无分享,去创建一个
Matthew A. Wyczalkowski | Ratna R. Thangudu | Jared L. Johnson | Jasmin H. Bavarva | Sara R. Savage | G. Getz | S. Dhanasekaran | A. Chinnaiyan | L. Yao | E. Schadt | A. Nesvizhskii | B. Reva | G. Hostetter | G. Omenn | S. Jewell | F. Aguet | N. Razavian | Chet Birger | David I. Heiman | Özgün Babur | M. Gillette | A. Paulovich | L. Cantley | M. Anurag | T. Liu | M. Wiznerowicz | K. Ketchum | A. Moreira | M. Birrer | D. Fenyö | A. Tsirigos | A. Lazar | A. Colaprico | M. Thiagarajan | K. Clauser | D. Mani | B. Druker | Yuxing Liao | C. Kumar-Sinha | Zhiao Shi | Weiping Ma | S. Payne | K. Rodland | Yongchao Dou | D. Zhou | Chen Huang | S. Satpathy | Wenke Liu | Yige Wu | Bo Wen | Song Cao | Dmitry Rykunov | Tara Hiltke | K. Ruggles | Bing Zhang | A. Calinawan | Steve Carr | S. Chowdhury | M. Domagalski | Alicia Francis | Y. Geffen | R. Hong | Yingwei Hu | Jiayi Ji | Yize Li | Chelsea J. Newton | F. Petralia | M. Schnaubelt | Liang-Bo Wang | E. Demicco | Joshua M Wang | Wen-Wei Liang | S. Foltz | Vasileios Stathias | S. Schürer | S. Gosline | Felipe da Veiga Leprevost | R. Oldroyd | M. Selvan | M. Ellis | Iga Kołodziejczak | Zhen Zhang | Nadezhda V Terekhanova | N. Tignor | E. Storrs | E. An | Wilson H. McKerrow | Eric J. Jaehnig | Yizhe Song | Pietro Pugliese | Han-Byoul Cho | F. M. Rodrigues | Daniel W. Chan | M. Cieslik | R. Lazcano | A. Iavarone | Emily M. Huntsman | L. Katsnelson | Jimin Tan | Xiaoyu Song | M. Ceccarelli | Henry Rodriguez | Shankara K. Anand | Tania J. González Robles | Tomer M. Yaron | Jonathan T. Lei | Caleb M Lindgren | Li Ding | Xu Zhang | Tobias Schraink | Xinpei Yi | Richard D. Smith | Wen Jiang | Karsten Krug | Ying Wang | Peisen Wang | Hui Zhang | Y. Akiyama | Z. Gümüş | Nathan J. Edwards | Ana I. Robles | Qing Zhang | Corbin Day
[1] Matthew A. Wyczalkowski,et al. Proteogenomic data and resources for pan-cancer analysis. , 2023, Cancer cell.
[2] M. Unberath,et al. Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review , 2021, npj Digital Medicine.
[3] Dana R. Valley,et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma , 2021, Cell.
[4] Jacob D. Jaffe,et al. Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds , 2021, Scientific data.
[5] Dana R. Valley,et al. A proteogenomic portrait of lung squamous cell carcinoma , 2021, Cell.
[6] Yuling Luo,et al. Histopathological image and gene expression pattern analysis for predicting molecular features and prognosis of head and neck squamous cell carcinoma , 2021, Cancer medicine.
[7] M. Cui,et al. Artificial intelligence and computational pathology , 2021, Laboratory Investigation.
[8] Alexander R. Pico,et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. , 2021, Cancer cell.
[9] Pierre Courtiol,et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images , 2020, Nature Communications.
[10] Jeffrey R. Whiteaker,et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma , 2020, Cell.
[11] Xiaowei Zhuang,et al. A technical review of canonical correlation analysis for neuroscience applications , 2020, Human brain mapping.
[12] T. Massoud,et al. Predicting tumour mutational burden from histopathological images using multiscale deep learning , 2020, Nature Machine Intelligence.
[13] N. Razavian,et al. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models , 2020, bioRxiv.
[14] D. Fenyö,et al. Predicting and Visualizing STK11 Mutation in Lung Adenocarcinoma Histopathology Slides Using Deep Learning , 2020, bioRxiv.
[15] Peter B. McGarvey,et al. Proteogenomic Characterization of Endometrial Carcinoma , 2020, Cell.
[16] Anne L. Martel,et al. Deep neural network models for computational histopathology: A survey , 2019, Medical Image Anal..
[17] Jakob Nikolas Kather,et al. Pan-cancer image-based detection of clinically actionable genetic alterations , 2019, Nature Cancer.
[18] Alexander W. Jung,et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis , 2019, Nature Cancer.
[19] Guo Ci Teo,et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma , 2019, Cell.
[20] F. Azuaje,et al. Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning , 2019, bioRxiv.
[21] C. V. Jawahar,et al. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning , 2019, Scientific Reports.
[22] M. Gurcan,et al. Digital pathology and artificial intelligence. , 2019, The Lancet. Oncology.
[23] B. Engelhardt,et al. Joint analysis of expression levels and histological images identifies genes associated with tissue morphology , 2018, Nature Communications.
[24] N. Razavian,et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning , 2018, Nature Medicine.
[25] Henry Rodriguez,et al. Revolutionizing Precision Oncology through Collaborative Proteogenomics and Data Sharing , 2018, Cell.
[26] Steven J. M. Jones,et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. , 2018, Cell.
[27] Icgc,et al. Pan-cancer analysis of whole genomes , 2017, bioRxiv.
[28] Angela N. Brooks,et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.
[29] Ankur Taly,et al. Axiomatic Attribution for Deep Networks , 2017, ICML.
[30] Dayong Wang,et al. Deep Learning for Identifying Metastatic Breast Cancer , 2016, ArXiv.
[31] Nassir Navab,et al. Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images , 2016, IEEE Transactions on Medical Imaging.
[32] Sergey Ioffe,et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.
[33] Bolei Zhou,et al. Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[34] Stephen M. Moore,et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.
[35] R. Tibshirani,et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.
[36] William C. S. Cho,et al. Proteomics Technologies and Challenges , 2007, Genom. Proteom. Bioinform..