Shaping microtubules into diverse patterns: Molecular connections for setting up both ends

Microtubules serve as rails for intracellular trafficking and their appropriate organization is critical for the generation of cell polarity, which is a foundation of cell differentiation, tissue morphogenesis, ontogenesis and the maintenance of homeostasis. The microtubule array is not just a static railway network; it undergoes repeated collapse and reassembly in diverse patterns during cell morphogenesis. In the last decade much progress has been made toward understanding the molecular mechanisms governing complex microtubule patterning. This review first revisits the basic principle of microtubule dynamics, and then provides an overview of how microtubules are arranged in highly shaped and functional patterns in cells changing their morphology by factors controlling the fate of microtubule ends. © 2011 Wiley Periodicals, Inc.

[1]  E. Karsenti,et al.  Microtubule‐dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation , 2005, The EMBO journal.

[2]  Shoichiro Tsukita,et al.  Adenomatous Polyposis Coli (APC) Protein Moves along Microtubules and Concentrates at Their Growing Ends in Epithelial Cells , 2000, The Journal of cell biology.

[3]  Anthony A. Hyman,et al.  Growth, fluctuation and switching at microtubule plus ends , 2009, Nature Reviews Molecular Cell Biology.

[4]  Y. Barral,et al.  The septin family of GTPases: architecture and dynamics , 2008, Nature Reviews Molecular Cell Biology.

[5]  T. Akiyama,et al.  Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. , 2004, Developmental cell.

[6]  Sophie G. Martin,et al.  Shaping fission yeast with microtubules. , 2009, Cold Spring Harbor perspectives in biology.

[7]  A. Hyman,et al.  Microtubule polymerases and depolymerases. , 2007, Current opinion in cell biology.

[8]  N. Galjart,et al.  Phosphorylation of CLASP2 by GSK-3β regulates its interaction with IQGAP1, EB1 and microtubules , 2009, Journal of Cell Science.

[9]  J. Kilmartin,et al.  Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. , 1996, The EMBO journal.

[10]  M. McNiven,et al.  Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms , 1984, Cell.

[11]  G. Kreitzer,et al.  Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. , 2007, Developmental cell.

[12]  T. Toda,et al.  Spindle–kinetochore attachment requires the combined action of Kin I‐like Klp5/6 and Alp14/Dis1‐MAPs in fission yeast , 2002, The EMBO journal.

[13]  A. Hyman,et al.  EB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice , 2009, PloS one.

[14]  E. Fuchs,et al.  Desmoplakin: an unexpected regulator of microtubule organization in the epidermis , 2007, The Journal of cell biology.

[15]  E. Spiliotis Regulation of microtubule organization and functions by septin GTPases , 2010, Cytoskeleton.

[16]  David Strutt,et al.  Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. , 2006, Developmental cell.

[17]  Shoichiro Tsukita,et al.  "Search-and-capture" of microtubules through plus-end-binding proteins (+TIPs). , 2003, Journal of biochemistry.

[18]  Mohan L Gupta,et al.  Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle , 2006, Nature Cell Biology.

[19]  E. Taylor,et al.  The colchicine-binding protein of mammalian brain and its relation to microtubules. , 1968, Biochemistry.

[20]  G. Steinberg,et al.  Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. , 2003, Molecular biology of the cell.

[21]  R. Vallee,et al.  Dynein at the cortex. , 2002, Current opinion in cell biology.

[22]  Y. Barral,et al.  Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables , 2003, The Journal of cell biology.

[23]  Carsten Janke,et al.  Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton , 2010, Trends in Neurosciences.

[24]  W. Chia,et al.  Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis , 2008, The Journal of cell biology.

[25]  J. Chen,et al.  Moe1, a conserved protein in Schizosaccharomyces pombe, interacts with a Ras effector, Scd1, to affect proper spindle formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[27]  Jin-Wu Tsai,et al.  Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells , 2010, Nature Neuroscience.

[28]  A. Hall,et al.  Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity , 2003, Nature.

[29]  R. Ohi,et al.  Microtubule-depolymerizing kinesins. , 2013, Annual review of cell and developmental biology.

[30]  Colin A. Johnson,et al.  Planar Cell Polarity Acts Through Septins to Control Collective Cell Movement and Ciliogenesis , 2010, Science.

[31]  Sarah S. Goodwin,et al.  Patronin Regulates the Microtubule Network by Protecting Microtubule Minus Ends , 2010, Cell.

[32]  J. Wallingford Planar cell polarity signaling, cilia and polarized ciliary beating. , 2010, Current opinion in cell biology.

[33]  Liedewij Laan,et al.  Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.

[34]  L. Kinch,et al.  New Roles for Gα and RGS Proteins: Communication Continues despite Pulling Sisters Apart , 2005, Current Biology.

[35]  Niels Galjart,et al.  CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex , 2005, The Journal of cell biology.

[36]  M. Scott,et al.  A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution , 2010, Science.

[37]  Jacqueline Hayles,et al.  A journey into space , 2001, Nature Reviews Molecular Cell Biology.

[38]  T. Davis,et al.  Pcp 1 p , an Spc 110 p-related Calmodulin Target at the Centrosome of the Fission Yeast Schizosaccharomyces pombe 1 , 2002 .

[39]  Jonathon Howard,et al.  Straight GDP-Tubulin Protofilaments Form in the Presence of Taxol , 2007, Current Biology.

[40]  Y. Gachet,et al.  Tip1/CLIP-170 Protein Is Required for Correct Chromosome Poleward Movement in Fission Yeast , 2010, PloS one.

[41]  Chris I. De Zeeuw,et al.  CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts , 2001, Cell.

[42]  E. Ralston,et al.  Reorganization of microtubule nucleation during muscle differentiation. , 2005, Cell motility and the cytoskeleton.

[43]  S. Karki,et al.  Dynein binds to beta-catenin and may tether microtubules at adherens junctions. , 2001, Nature cell biology.

[44]  H. Maekawa,et al.  The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage , 2003, The EMBO journal.

[45]  K. Kaibuchi,et al.  Binding of APC and dishevelled mediates Wnt5a‐regulated focal adhesion dynamics in migrating cells , 2010, The EMBO journal.

[46]  M. Bornens,et al.  Microtubule nucleation at the cis‐side of the Golgi apparatus requires AKAP450 and GM130 , 2009, The EMBO journal.

[47]  L. Amos,et al.  Microtubules and maps. , 2005, Advances in protein chemistry.

[48]  Chris Q. Doe,et al.  Spindle orientation during asymmetric cell division , 2009, Nature Cell Biology.

[49]  A. Hall,et al.  Rho GTPases in cell biology , 2002, Nature.

[50]  H. Goodson,et al.  The CLIP-170 orthologue Bik1p and positioning the mitotic spindle in yeast. , 2006, Current topics in developmental biology.

[51]  C. Waterman-Storer,et al.  Conserved microtubule–actin interactions in cell movement and morphogenesis , 2003, Nature Cell Biology.

[52]  S. Bagley,et al.  S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. , 2006, Genes & development.

[53]  D. Murphy,et al.  Purified kinesin promotes vesicle motility and induces active sliding between microtubules in vitro. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Maria M. Lopez,et al.  Mitotic Kinesin CENP-E Promotes Microtubule Plus-End Elongation , 2010, Current Biology.

[55]  Peter K. Sorger,et al.  A role for the Adenomatous Polyposis Coli protein in chromosome segregation , 2001, Nature Cell Biology.

[56]  Mohan L Gupta,et al.  Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. , 2004, Developmental cell.

[57]  B. Buendia,et al.  Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells , 1990, The Journal of cell biology.

[58]  Jacek Gaertig,et al.  Post-translational modifications of microtubules , 2010, Journal of Cell Science.

[59]  C. Hoogenraad,et al.  Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry , 2010, PLoS biology.

[60]  J. Millar,et al.  Ringing the changes: emerging roles for DASH at the kinetochore–microtubule Interface , 2011, Chromosome Research.

[61]  Elaine Fuchs,et al.  ACF7 An essential integrator of microtubule dynamics , 2003, Cell.

[62]  Eric Karsenti,et al.  Stathmin-Tubulin Interaction Gradients in Motile and Mitotic Cells , 2004, Science.

[63]  P. Gönczy Mechanisms of asymmetric cell division: flies and worms pave the way , 2008, Nature Reviews Molecular Cell Biology.

[64]  Cecilia Conde,et al.  Microtubule assembly, organization and dynamics in axons and dendrites , 2009, Nature Reviews Neuroscience.

[65]  C. L. Adams,et al.  The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration , 1996, The Journal of cell biology.

[66]  C. Waterman-Storer,et al.  Adenomatous Polyposis Coli on Microtubule Plus Ends in Cell Extensions Can Promote Microtubule Net Growth with or without EB 1 , 2006 .

[67]  G. Borisy,et al.  Self-centring activity of cytoplasm , 1997, Nature.

[68]  T. Toda,et al.  γ-Tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast , 2007, Nature Cell Biology.

[69]  T. Lechler,et al.  Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis , 2011, The Journal of cell biology.

[70]  Ilya Grigoriev,et al.  Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5α/β , 2010, The Journal of cell biology.

[71]  M. Bornens,et al.  Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. , 2000, Journal of cell science.

[72]  T. Schroer,et al.  Polarity and nucleation of microtubules in polarized epithelial cells. , 1995, Cell motility and the cytoskeleton.

[73]  M. Chen,et al.  EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration , 2004, Nature Cell Biology.

[74]  T. Toda,et al.  Ndc80 Internal Loop Interacts with Dis1/TOG to Ensure Proper Kinetochore-Spindle Attachment in Fission Yeast , 2011, Current Biology.

[75]  E. Taylor,et al.  Tublin: nucleotide binding and enzymic activity. , 1974, Journal of molecular biology.

[76]  Gary J. Brouhard,et al.  XMAP215 Is a Processive Microtubule Polymerase , 2008, Cell.

[77]  D. Pellman,et al.  Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. , 2000, Science.

[78]  P. Watson,et al.  Microtubule plus-end loading of p150Glued is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells , 2006, Journal of Cell Science.

[79]  S. Tsukita,et al.  Adenomatous polyposis coli (APC) protein regulates epithelial cell migration and morphogenesis via PDZ domain‐based interactions with plasma membranes , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[80]  J. Chen,et al.  A conserved interaction between Moe1 and Mal3 is important for proper spindle formation in Schizosaccharomyces pombe. , 2000, Molecular biology of the cell.

[81]  Akatsuki Kimura,et al.  Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain , 2010, The EMBO journal.

[82]  G. Borisy,et al.  Cadherin-mediated regulation of microtubule dynamics , 2000, Nature Cell Biology.

[83]  Y. Yamashita Regulation of asymmetric stem cell division: spindle orientation and the centrosome. , 2009, Frontiers in bioscience.

[84]  J. Yates,et al.  Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. , 2007, Developmental cell.

[85]  H. Clevers,et al.  Mutations in the APC tumour suppressor gene cause chromosomal instability , 2001, Nature Cell Biology.

[86]  Juergen A. Knoblich,et al.  Asymmetric cell division: recent developments and their implications for tumour biology , 2010, Nature Reviews Molecular Cell Biology.

[87]  J. Lechner,et al.  Stu1 inversely regulates kinetochore capture and spindle stability. , 2009, Genes & development.

[88]  G. C. Rogers,et al.  Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase , 2004, Nature.

[89]  D. Compton,et al.  CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore‐microtubule dynamics to promote mitotic progression and fidelity , 2010, The EMBO journal.

[90]  C. Waterman-Storer,et al.  Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells , 2005, The Journal of cell biology.

[91]  G. Gundersen,et al.  Generation of noncentrosomal microtubule arrays , 2006, Journal of Cell Science.

[92]  C. Sütterlin,et al.  Par6α Interacts with the Dynactin Subunit p150Glued and Is a Critical Regulator of Centrosomal Protein Recruitment , 2010, Molecular biology of the cell.

[93]  A. Kimura,et al.  Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans male pronuclear migration. , 2005, Developmental cell.

[94]  M. Kinoshita,et al.  Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules , 2008, The Journal of cell biology.

[95]  D. Schlaepfer,et al.  Localized Stabilization of Microtubules by Integrin- and FAK-Facilitated Rho Signaling , 2004, Science.

[96]  David Strutt,et al.  Principles of planar polarity in animal development , 2011, Development.

[97]  Irina Kaverina,et al.  Microtubules meet substrate adhesions to arrange cell polarity. , 2003, Current opinion in cell biology.

[98]  S. Ems-McClung,et al.  Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules. , 2010, Seminars in cell & developmental biology.

[99]  F. McNally,et al.  Microtubule-severing enzymes. , 2010, Current opinion in cell biology.

[100]  G. Gundersen Evolutionary conservation of microtubule-capture mechanisms , 2002, Nature Reviews Molecular Cell Biology.

[101]  C. Waterman-Storer,et al.  Cell motility: can Rho GTPases and microtubules point the way? , 2001, Journal of cell science.

[102]  D. V. Vactor,et al.  The Microtubule Plus End Tracking Protein Orbit/MAST/CLASP Acts Downstream of the Tyrosine Kinase Abl in Mediating Axon Guidance , 2004, Neuron.

[103]  T. Uemura,et al.  Shortstop Recruits EB1/APC1 and Promotes Microtubule Assembly at the Muscle-Tendon Junction , 2003, Current Biology.

[104]  A. Hyman,et al.  Motor-Independent Targeting of CLASPs to Kinetochores by CENP-E Promotes Microtubule Turnover and Poleward Flux , 2009, Current Biology.

[105]  H. Nojima,et al.  Mcp5, a meiotic cell cortex protein, is required for nuclear movement mediated by dynein and microtubules in fission yeast , 2006, The Journal of cell biology.

[106]  S. Dedhar,et al.  NGF-Induced Axon Growth Is Mediated by Localized Inactivation of GSK-3β and Functions of the Microtubule Plus End Binding Protein APC , 2004, Neuron.

[107]  D. Cleveland,et al.  NuMA after 30 years: the matrix revisited. , 2010, Trends in cell biology.

[108]  S. Etienne-Manneville,et al.  Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity , 2010, The Journal of cell biology.

[109]  Tetsu Akiyama,et al.  Identification of a link between the tumour suppressor APC and the kinesin superfamily , 2002, Nature Cell Biology.

[110]  L. Cassimeris The oncoprotein 18/stathmin family of microtubule destabilizers. , 2002, Current opinion in cell biology.

[111]  A. Reilein,et al.  APC is a component of an organizing template for cortical microtubule networks , 2005, Nature Cell Biology.

[112]  Masayuki Yamamoto,et al.  Fission Yeast Num1p Is a Cortical Factor Anchoring Dynein and Is Essential for the Horse-Tail Nuclear Movement During Meiotic Prophase , 2006, Genetics.

[113]  A. Hyman,et al.  Global and local control of microtubule destabilization promoted by a catastrophe kinesin MCAK/XKCM1 , 2006, Journal of Muscle Research & Cell Motility.

[114]  L. Amos,et al.  Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice , 2008, Nature Structural &Molecular Biology.

[115]  Qiangge Zhang,et al.  Nudel contributes to microtubule anchoring at the mother centriole and is involved in both dynein-dependent and -independent centrosomal protein assembly. , 2005, Molecular biology of the cell.

[116]  Tetsuya J. Kobayashi,et al.  Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. , 2010, Developmental cell.

[117]  I. Dupin,et al.  Classical cadherins control nucleus and centrosome position and cell polarity , 2009, The Journal of cell biology.

[118]  J. Chilton,et al.  Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis , 2008, Nature Cell Biology.

[119]  C. Walczak,et al.  Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. , 2004, Molecular cell.

[120]  E. Salmon,et al.  Actomyosin-based Retrograde Flow of Microtubules in the Lamella of Migrating Epithelial Cells Influences Microtubule Dynamic Instability and Turnover and Is Associated with Microtubule Breakage and Treadmilling , 1997, The Journal of cell biology.

[121]  U Serdar Tulu,et al.  Quantification of microtubule nucleation, growth and dynamics in wound-edge cells , 2005, Journal of Cell Science.

[122]  Klemens Rottner,et al.  Targeting, Capture, and Stabilization of Microtubules at Early Focal Adhesions , 1998, The Journal of cell biology.

[123]  H. Hotani,et al.  Dynamics of microtubules visualized by darkfield microscopy: treadmilling and dynamic instability. , 1988, Cell motility and the cytoskeleton.

[124]  E. Lane,et al.  Ninein is released from the centrosome and moves bi-directionally along microtubules , 2007, Journal of Cell Science.

[125]  Guojun Sheng,et al.  RhoA and microtubule dynamics control cell–basement membrane interaction in EMT during gastrulation , 2008, Nature Cell Biology.

[126]  T. Davis,et al.  Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. , 2002, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[127]  S. Kuroda,et al.  Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170 , 2002, Cell.

[128]  Dheeraj S. Roy,et al.  Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia , 2011, The Journal of cell biology.

[129]  J. Yates,et al.  DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement , 2008, The Journal of cell biology.

[130]  T. Toda,et al.  The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast , 2005, The EMBO journal.

[131]  S. Karki,et al.  Dynein binds to β-catenin and may tether microtubules at adherens junctions , 2001, Nature Cell Biology.

[132]  Niels Galjart,et al.  CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. , 2006, Developmental cell.

[133]  M. Takeichi,et al.  Anchorage of Microtubule Minus Ends to Adherens Junctions Regulates Epithelial Cell-Cell Contacts , 2008, Cell.

[134]  G. Kreitzer,et al.  KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC , 2010, The Journal of cell biology.

[135]  Damian Brunner,et al.  Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. , 2004, Developmental cell.

[136]  M. Kinoshita Diversity of septin scaffolds. , 2006, Current opinion in cell biology.

[137]  Ronald D. Vale,et al.  Regulators of the cytoplasmic dynein motor , 2009, Nature Reviews Molecular Cell Biology.

[138]  J. Behrens,et al.  AMER1 regulates the distribution of the tumor suppressor APC between microtubules and the plasma membrane , 2007, Journal of Cell Science.

[139]  C. Hoogenraad,et al.  SLAIN2 links microtubule plus end–tracking proteins and controls microtubule growth in interphase , 2011, The Journal of cell biology.

[140]  E. Meijering,et al.  In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends , 2010, Current Biology.

[141]  Shuichi Onami,et al.  Local cortical pulling-force repression switches centrosomal centration and posterior displacement in C. elegans , 2007, The Journal of cell biology.

[142]  Jessica K. Polka,et al.  Microtubule nucleating γTuSC assembles structures with 13-fold microtubule-like symmetry , 2010, Nature.

[143]  T. Stearns,et al.  Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes , 2004, Journal of Cell Science.

[144]  J. Cooper,et al.  The mating-specific Galpha interacts with a kinesin-14 and regulates pheromone-induced nuclear migration in budding yeast. , 2009, Molecular biology of the cell.

[145]  Y. Hiraoka,et al.  Cytoplasmic dynein in fungi: insights from nuclear migration , 2003, Journal of Cell Science.

[146]  N. Katsanis,et al.  The Vertebrate Primary Cilium in Development, Homeostasis, and Disease , 2009, Cell.

[147]  G. Gundersen,et al.  Microtubules and signal transduction. , 1999, Current opinion in cell biology.

[148]  G. Gundersen,et al.  Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase , 2005, Nature Cell Biology.

[149]  R. Vallee,et al.  Targeting of Motor Proteins , 1996, Science.

[150]  C. Sunkel,et al.  Microtubule-associated proteins and their essential roles during mitosis. , 2004, International review of cytology.

[151]  H. Baier,et al.  Regulation of Neurogenesis by Interkinetic Nuclear Migration through an Apical-Basal Notch Gradient , 2008, Cell.

[152]  R. Heald,et al.  Adenomatous Polyposis Coli Associates with the Microtubule-Destabilizing Protein XMCAK , 2004, Current Biology.

[153]  K. Sawin,et al.  Two distinct regions of Mto1 are required for normal microtubule nucleation and efficient association with the γ-tubulin complex in vivo , 2008, Journal of Cell Science.

[154]  M. Wolyniak,et al.  The regulation of microtubule dynamics in Saccharomyces cerevisiae by three interacting plus-end tracking proteins. , 2006, Molecular biology of the cell.

[155]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[156]  Michael J. Lee,et al.  Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour , 2001, Nature Cell Biology.

[157]  D. Brown,et al.  Rearrangement of tubulin, actin, and myosin in cultured ventricular cardiomyocytes of the adult rat. , 1986, Cell motility and the cytoskeleton.

[158]  T. Pawson,et al.  Par3 and Dynein Associate to Regulate Local Microtubule Dynamics and Centrosome Orientation during Migration , 2009, Current Biology.

[159]  E. Karsenti,et al.  Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules , 1987, The Journal of cell biology.

[160]  T. Toda,et al.  Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. , 2004, Molecular biology of the cell.

[161]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[162]  M. Fuller,et al.  Orientation of Asymmetric Stem Cell Division by the APC Tumor Suppressor and Centrosome , 2003, Science.

[163]  C. Hoogenraad,et al.  Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity , 2009, Neuron.

[164]  T. Stearns,et al.  Microtubule-organizing centres: a re-evaluation , 2007, Nature Reviews Molecular Cell Biology.

[165]  C. Waterman-Storer,et al.  Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. , 2006, Molecular biology of the cell.

[166]  A. Chaudhuri,et al.  Molecular linkage underlying microtubule orientation toward cortical sites in yeast. , 2000, Science.

[167]  Daniel J. Anderson,et al.  Cik1 Targets the Minus-End Kinesin Depolymerase Kar3 to Microtubule Plus Ends , 2005, Current Biology.

[168]  Elaine Fuchs,et al.  Skin stem cells: rising to the surface , 2008, The Journal of cell biology.

[169]  R. Berry,et al.  Interactions of tubulin with vinblastine and guanosine triphosphate. , 1972, Journal of molecular biology.

[170]  Lilianna Solnica-Krezel,et al.  Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. , 2011, Developmental cell.

[171]  A. Helfant Composition of the spindle pole body of Saccharomyces cerevisiae and the proteins involved in its duplication , 2002, Current Genetics.

[172]  Anthony A. Hyman,et al.  Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner , 2006, Nature Cell Biology.

[173]  M. Leroux,et al.  Quality control of cytoskeletal proteins and human disease. , 2010, Trends in biochemical sciences.

[174]  E. Morrison,et al.  MCAK associates with EB1 , 2008, Oncogene.

[175]  E. Salmon,et al.  Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae , 2006, The Journal of cell biology.

[176]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[177]  E. Nigg,et al.  A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. , 2005, Molecular biology of the cell.

[178]  P. Stukenberg,et al.  ICIS and Aurora B Coregulate the Microtubule Depolymerase Kif2a , 2009, Current Biology.

[179]  T. Ikegami,et al.  Identification of a Link between the SAMP Repeats of Adenomatous Polyposis Coli Tumor Suppressor and the Src Homology 3 Domain of DDEF* , 2008, Journal of Biological Chemistry.

[180]  Linda Wordeman,et al.  The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. , 2008, Developmental cell.

[181]  David Pellman,et al.  Microtubule “Plus-End-Tracking Proteins” The End Is Just the Beginning , 2001, Cell.

[182]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.