Electrostatic spin control in multi-barrier nanowires

We demonstrate that a consistent breakdown of the standard even–odd filling scheme in the Coulomb blockade regime can be easily obtained in a quantum dot containing two wells strongly coupled by a very transparent barrier. By exploiting a multi-gate configuration, we prove that a partial filling of nearly degenerate orbitals can be controlled electrostatically. Singlet–triplet spin transitions are demonstrated by low-temperature magneto-transport measurements.

[1]  T. Christen,et al.  Entropy production moment closures and effective transport coefficients , 2014 .

[2]  E. Bakkers,et al.  Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire , 2013, Nature Physics.

[3]  E. Bakkers,et al.  Electrical control of single hole spins in nanowire quantum dots. , 2013, Nature nanotechnology.

[4]  F. Beltram,et al.  Electrostatic spin control in InAs/InP nanowire quantum dots. , 2012, Nano letters.

[5]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[6]  E. Bakkers,et al.  Electrical control of single hole spins in InSb nanowire quantum dots , 2012 .

[7]  F. Beltram,et al.  Hot-electron effects in InAs nanowire Josephson junctions , 2011 .

[8]  Lucia Sorba,et al.  Manipulation of electron orbitals in hard-wall InAs/InP nanowire quantum dots. , 2010, Nano letters.

[9]  E. Bakkers,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[10]  G. Salviati,et al.  Faceting of InAs−InSb Heterostructured Nanowires , 2010 .

[11]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[12]  E. Bakkers,et al.  Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade , 2010, 1002.2120.

[13]  E. Lind,et al.  Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz. , 2010, Nano letters.

[14]  Vincenzo Grillo,et al.  InAs/InSb nanowire heterostructures grown by chemical beam epitaxy , 2009, Nanotechnology.

[15]  Philippe Caroff,et al.  Giant, level-dependent g factors in InSb nanowire quantum dots. , 2009, Nano letters.

[16]  C. Lieber,et al.  Spin states of holes in Ge/Si nanowire quantum dots. , 2008, Physical review letters.

[17]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[18]  Philippe Caroff,et al.  High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. , 2008, Small.

[19]  Lars-Erik Wernersson,et al.  InAs nanowire metal-oxide-semiconductor capacitors , 2008 .

[20]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[21]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[22]  Mats-Erik Pistol,et al.  Few electron double quantum dots in InAs/InP nanowire heterostructures. , 2007, Nano letters.

[23]  D. Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[24]  Charles M. Lieber,et al.  Ge/Si nanowire mesoscopic Josephson junctions , 2006, Nature nanotechnology.

[25]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[26]  A. Sørensen,et al.  Spin-orbit mediated control of spin qubits. , 2006, Physical review letters.

[27]  M. Bjork,et al.  Tunable effective g factor in InAs nanowire quantum dots , 2005, cond-mat/0507433.

[28]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[29]  Lars Samuelson,et al.  Few-Electron Quantum Dots in Nanowires , 2004 .

[30]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[31]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[32]  M. Kastner,et al.  Singlet triplet transition in a single-electron transistor at zero magnetic field , 2002, cond-mat/0208268.

[33]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[34]  S. Tarucha,et al.  Few-electron quantum dots , 2001 .

[35]  Tarucha,et al.  Direct coulomb and exchange interaction in artificial atoms , 2000, Physical review letters.

[36]  Jun Li,et al.  Supplementary Data 9 , 2013 .