Water-soluble photoluminescent silicon quantum dots.

For silicon quantum dots to be used in biomedical applications it is essential that they have a substantial photoluminescence quantum yield in the visible region, have a fast radiative recombination rate, and are water soluble and hydrophilic to prevent aggregation and precipitation in a biological environment. The chemical process used to terminate the surfaces of the silicon quantum dots changes the internal electronic structure and thus plays an important role in the resultant emission wavelength and radiative lifetime, and ultimately determines the solubility. [18] Silicon quantum dots with an oxide surface passivation typically display a dipole-forbidden yellow-red emission with radiative lifetimes of 10 3 –10 6 s. [18, 26] This slow rate of recombination limits the use of oxide-passivated silicon quantum dots in biological imaging. However, silicon quantum dots with a hydrogen or carbon surface passivation have electric-dipole-allowed direct band gap transitions that lead to blue photoluminescence with fast recombination rates of 10 8 –10 9 s. [18, 20]

[1]  Edward H. Sargent,et al.  Luminescence from processible quantum dot-polymer light emitters 1100–1600 nm: Tailoring spectral width and shape , 2004 .

[2]  J. Grossman,et al.  Computational studies of the optical emission of silicon nanocrystals. , 2003, Journal of the American Chemical Society.

[3]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[4]  R. Tilley,et al.  Preparation of Large Scale Monolayers of Gold Nanoparticles on Modified Silicon Substrates Using a Controlled Pulling Method , 2003 .

[5]  A. R. Williams,et al.  Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer , 1983 .

[6]  G. Samara,et al.  Optical and Electronic Properties of Si Nanoclusters Synthesized in Inverse Micelles , 1999 .

[7]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[8]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[9]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[10]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[11]  Applied physics: A light-emitting sandwich filling , 2002, Nature.

[12]  H. Weller,et al.  Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites , 2003 .

[13]  J. Warner,et al.  Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals , 2005, Nanotechnology.

[14]  Jing Zou,et al.  Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles , 2004 .

[15]  Masato Yasuhara,et al.  Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification , 2004 .

[16]  D. Nagesha,et al.  Biorelevant Calcification and Non‐Cytotoxic Behavior in Silicon Nanowires , 2005 .

[17]  F. Hirayama,et al.  Actinometric determination of absolute fluorescence quantum yields , 1983 .

[18]  Louis E. Brus,et al.  Electronic Structure and Luminescence of 1.1- and 1.4-nm Silicon Nanocrystals: Oxide Shell versus Hydrogen Passivation , 2003 .

[19]  Susan M. Kauzlarich,et al.  Synthesis of Alkyl-Terminated Silicon Nanoclusters by a Solution Route , 1999 .

[20]  Paul F. Barbara,et al.  Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots , 2002 .

[21]  N. Greenham,et al.  Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers , 2003 .

[22]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[23]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[24]  Richard K. Baldwin,et al.  Solution reduction synthesis of surface stabilized silicon nanoparticles. , 2002, Chemical communications.

[25]  E. Sargent,et al.  Photoconductivity from PbS-nanocrystal∕semiconducting polymer composites for solution-processible, quantum-size tunableinfrared photodetectors , 2004 .

[26]  Mark M. Green Halbleiter‐Quantenpunkte als biologische Imaging‐Substanzen , 2004 .

[27]  Mark Green,et al.  Semiconductor quantum dots as biological imaging agents. , 2004, Angewandte Chemie.

[28]  Ueno,et al.  Stability of the wurtzite-type structure under high pressure: GaN and InN. , 1994, Physical review. B, Condensed matter.

[29]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[30]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[31]  Jess P. Wilcoxon,et al.  Tailorable, Visible Light Emission From Silicon Nanocrystals , 1999 .

[32]  L. Canham,et al.  Derivatized Mesoporous Silicon with Dramatically Improved Stability in Simulated Human Blood Plasma , 1999 .