A Total-Power Radiometer Front End in a 0.25- $\mu \text{m}$ BiCMOS Technology With Low $1/{f}$ -Corner

This paper describes the analysis, design, and characterization of a high-sensitivity millimeter-wave total-power radiometer front-end integrated into a 0.25-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> SiGe:C BiCMOS technology. This prototype is composed of a two cascode stage low-noise amplifier (LNA) and a voltage-driven common-emitter square-law detector. The LNA is interfaced to the detector through a low transformation ratio (i.e., high-impedance node) to achieve an efficient wideband signal transfer. The front end achieves both a low <inline-formula> <tex-math notation="LaTeX">$1/f$ </tex-math></inline-formula>-noise corner and a low noise-equivalent power (NEP) by combining a large area, high resistive value load resistor together with a minimum size heterojunction bipolar transistor. At 56 GHz and optimum bias, the prototype provides a 61-MV/W responsivity which combined with a 194-nV/<inline-formula> <tex-math notation="LaTeX">$\surd $ </tex-math></inline-formula>Hz white noise level result in a 3.2-fW/<inline-formula> <tex-math notation="LaTeX">$\surd $ </tex-math></inline-formula>Hz NEP when the input power is modulated with a frequency above the 30-Hz flicker noise corner. The achieved 3-dB NEP bandwidth is 6 GHz.

[1]  M. Spirito,et al.  Characterization of broadband low-NEP SiGe square-law detectors for mm-wave passive imaging , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[2]  J. Melai,et al.  BiCMOS technology improvements for microwave application , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[3]  Kai Kang,et al.  Millimeter-Wave Passives in 45-nm Digital CMOS , 2010, IEEE Electron Device Letters.

[4]  Ralf Brederlow,et al.  Low-frequency noise of integrated polysilicon resistors , 2001 .

[5]  John D. Cressler,et al.  A switchable-core SiGe HBT low-noise amplifier for millimeter-wave radiometer applications , 2014, 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems.

[6]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[7]  Qun Jane Gu,et al.  CMOS receivers for active and passive mm-wave imaging , 2011, IEEE Communications Magazine.

[8]  M. E. Tiuri,et al.  Radio Astronomy Receivers , 1964, IEEE Transactions on Military Electronics.

[9]  Babak Heydari,et al.  Ultra High-Speed CMOS Circuits , 2012 .

[10]  John D. Cressler Fabrication of SiGe HBT BiCMOS Technology , 2007 .

[11]  P. Chevalier,et al.  $D$ -Band Total Power Radiometer Performance Optimization in an SiGe HBT Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[12]  Vipul Jain,et al.  Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver , 2011, IEEE Journal of Solid-State Circuits.

[13]  Zhiming Chen,et al.  A BiCMOS W-Band 2×2 Focal-Plane Array With On-Chip Antenna , 2012, IEEE Journal of Solid-State Circuits.

[14]  Adrian Tang,et al.  A D-Band Passive Imager in 65 nm CMOS , 2012, IEEE Microwave and Wireless Components Letters.

[15]  J. Long,et al.  The modeling, characterization, and design of monolithic inductors for silicon RF IC's , 1997, IEEE J. Solid State Circuits.

[16]  Edwin van der Heijden,et al.  A 1.95 GHz Sub-1 dB NF, +40 dBm OIP3 WCDMA LNA Module , 2012, IEEE Journal of Solid-State Circuits.

[17]  Gabriel M. Rebeiz,et al.  A 0.32 THz SiGe 4x4 Imaging Array Using High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[18]  Zheng Wang,et al.  Design and Analysis of a W-band 9-Element Imaging Array Receiver Using Spatial-Overlapping Super-Pixels in Silicon , 2014, IEEE Journal of Solid-State Circuits.

[19]  P. Schvan,et al.  Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio , 2007, IEEE Journal of Solid-State Circuits.

[20]  Changhuei Yang,et al.  Fundamental sensitivity limit imposed by dark 1/f noise in the low optical signal detection regime. , 2008, Optics express.

[21]  R. Dicke The measurement of thermal radiation at microwave frequencies. , 1946, The Review of scientific instruments.

[22]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[23]  Danny Elad,et al.  Key components of a D-band Dicke-radiometer in 90 nm SiGe BiCMOS technology , 2015, 2015 10th European Microwave Integrated Circuits Conference (EuMIC).

[24]  Gabriel M. Rebeiz,et al.  A Low-Power 136-GHz SiGe Total Power Radiometer With NETD of 0.25 K , 2016, IEEE Transactions on Microwave Theory and Techniques.

[25]  Minkyu Je,et al.  A Low Switching-Loss W-Band Radiometer Utilizing a Single-Pole-Double-Throw Distributed Amplifier in 0.13-$\mu{\hbox {m}}$ SiGe BiCMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[26]  P. Gamand,et al.  BiCMOS high-performance ICs: From DC to mm-wave , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[27]  Bernd Heinemann,et al.  A Terahertz Detector Array in a SiGe HBT Technology , 2013, IEEE Journal of Solid-State Circuits.

[28]  Arnulf Leuther,et al.  A $W$ -Band Monolithic Integrated Active Hot and Cold Noise Source , 2014, IEEE Transactions on Microwave Theory and Techniques.

[29]  Gabriel M. Rebeiz,et al.  Design and Characterization of $W$-Band SiGe RFICs for Passive Millimeter-Wave Imaging , 2010, IEEE Transactions on Microwave Theory and Techniques.

[30]  L. Galatro,et al.  Power control for S-parameters and large signal characterization at (sub)-mmWave frequencies , 2015, 2015 85th Microwave Measurement Conference (ARFTG).

[31]  D.B.M. Klaassen,et al.  SiGe:C profile optimization for low noise performance , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[32]  Zhiwei Xu,et al.  A CMOS Integrated W-band Passive Imager , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[33]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[34]  D. Harame,et al.  Noise-gain tradeoff in RF SiGe HBTs , 2001, 2001 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Digest of Papers (IEEE Cat. No.01EX496).

[35]  Gabriele Manganaro,et al.  Advances in Analog and RF IC Design for Wireless Communication Systems , 2013 .

[36]  Eran Socher,et al.  52-75 GHz wideband low-noise amplifier in 90 nm CMOS technology , 2012 .

[37]  Lei Zhou,et al.  A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems , 2011, IEEE Journal of Solid-State Circuits.

[38]  D. A. Thompson,et al.  Temperature compensation of total power radiometers , 2003 .

[39]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[40]  Danny Elad,et al.  Analog read-out integragted W-band Dicke-radiometer in 0.13um SiGe design and characterization of W-band radiometer RFIC intended for FPA imager , 2014, 2014 44th European Microwave Conference.