Error compensation of single-qubit gates in a surface-electrode ion trap using composite pulses
暂无分享,去创建一个
Peter Maunz | Kenneth R. Brown | So-Young Baek | Robin Harper | Jungsang Kim | Emily Mount | Steven Flammia | Stephen Crain | S. Baek | K. Brown | S. Flammia | S. Crain | Jungsang Kim | P. Maunz | R. Harper | Geert Vrijsen | Chingiz Kabytayev | Geert Vrijsen | E. Mount | Chingiz Kabytayev
[1] A. Steane. Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.
[2] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[3] Andrew G. Glen,et al. APPL , 2001 .
[4] Robert M. Jopson,et al. System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..
[5] I. V. Inlek,et al. Beat note stabilization of mode-locked lasers for quantum information processing. , 2013, Optics letters.
[6] E. Knill,et al. Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.
[7] C Langer,et al. Long-lived qubit memory using atomic ions. , 2005, Physical review letters.
[8] J Mizrahi,et al. Entanglement of atomic qubits using an optical frequency comb. , 2010, Physical review letters.
[9] Andrew W. Cross,et al. Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.
[10] S. Wimperis,et al. Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments , 1994 .
[11] Kenneth R. Brown,et al. Progress in Compensating Pulse Sequences for Quantum Computation , 2012, 1203.6392.
[12] So-Young Baek,et al. Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system , 2014 .
[13] Peter Maunz,et al. High speed, high fidelity detection of an atomic hyperfine qubit. , 2013, Optics letters.
[14] D. M. Lucas,et al. High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions , 2014, 1406.5473.
[15] David J. Wineland,et al. Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..
[16] Curtis Volin,et al. Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation , 2013, 1304.6636.
[17] Ray Freeman,et al. Compensation for Pulse Imperfections in NMR Spin-Echo Experiments , 1981 .
[18] David J. Wineland,et al. Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.
[19] Michael J. Biercuk,et al. Robustness of composite pulses to time-dependent control noise , 2014, 1402.5174.
[20] N. Linke,et al. High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.
[21] Michael Adams,et al. Scalable digital hardware for a trapped ion quantum computer , 2015, Quantum Inf. Process..
[22] Seth Lloyd,et al. Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.
[23] Robert Raussendorf,et al. Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.
[24] Optimal arbitrarily accurate composite pulse sequences , 2013, 1307.2211.
[25] Peter Maunz,et al. Single qubit manipulation in a microfabricated surface electrode ion trap , 2013, 1306.1269.
[26] H. Ball,et al. Experimental noise filtering by quantum control , 2014, Nature Physics.
[27] Jay M. Gambetta,et al. Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.
[28] E. Knill,et al. Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.
[29] R. Blatt,et al. Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.
[30] Kenneth R. Brown,et al. Transformed composite sequences for improved qubit addressing , 2014, 1401.1121.
[31] Steven T. Flammia,et al. Randomized benchmarking with confidence , 2014, 1404.6025.
[32] K. R. Brown,et al. Arbitrarily accurate composite pulse sequences (4 pages) , 2004 .
[33] Zach DeVito,et al. Opt , 2017 .