Error compensation of single-qubit gates in a surface-electrode ion trap using composite pulses

The fidelity of laser-driven quantum logic operations on trapped ion qubits tend to be lower than microwave-driven logic operations due to the difficulty of stabilizing the driving fields at the ion location. Through stabilization of the driving optical fields and use of composite pulse sequences, we demonstrate high fidelity single-qubit gates for the hyperfine qubit of a $^{171}\text{Yb}^+$ ion trapped in a microfabricated surface electrode ion trap. Gate error is characterized using a randomized benchmarking protocol, and an average error per randomized Clifford group gate of $3.6(3)\times10^{-4}$ is measured. We also report experimental realization of palindromic pulse sequences that scale efficiently in sequence length.

[1]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[2]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[5]  I. V. Inlek,et al.  Beat note stabilization of mode-locked lasers for quantum information processing. , 2013, Optics letters.

[6]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[7]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[8]  J Mizrahi,et al.  Entanglement of atomic qubits using an optical frequency comb. , 2010, Physical review letters.

[9]  Andrew W. Cross,et al.  Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.

[10]  S. Wimperis,et al.  Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments , 1994 .

[11]  Kenneth R. Brown,et al.  Progress in Compensating Pulse Sequences for Quantum Computation , 2012, 1203.6392.

[12]  So-Young Baek,et al.  Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system , 2014 .

[13]  Peter Maunz,et al.  High speed, high fidelity detection of an atomic hyperfine qubit. , 2013, Optics letters.

[14]  D. M. Lucas,et al.  High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions , 2014, 1406.5473.

[15]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[16]  Curtis Volin,et al.  Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation , 2013, 1304.6636.

[17]  Ray Freeman,et al.  Compensation for Pulse Imperfections in NMR Spin-Echo Experiments , 1981 .

[18]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[19]  Michael J. Biercuk,et al.  Robustness of composite pulses to time-dependent control noise , 2014, 1402.5174.

[20]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[21]  Michael Adams,et al.  Scalable digital hardware for a trapped ion quantum computer , 2015, Quantum Inf. Process..

[22]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[23]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[24]  Optimal arbitrarily accurate composite pulse sequences , 2013, 1307.2211.

[25]  Peter Maunz,et al.  Single qubit manipulation in a microfabricated surface electrode ion trap , 2013, 1306.1269.

[26]  H. Ball,et al.  Experimental noise filtering by quantum control , 2014, Nature Physics.

[27]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[28]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[29]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[30]  Kenneth R. Brown,et al.  Transformed composite sequences for improved qubit addressing , 2014, 1401.1121.

[31]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[32]  K. R. Brown,et al.  Arbitrarily accurate composite pulse sequences (4 pages) , 2004 .

[33]  Zach DeVito,et al.  Opt , 2017 .