Quantum criticality around metal-insulator transitions of strongly correlated electron systems

Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical ``opalescence.'' The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in ${(\mathrm{V},\mathrm{Cr})}_{2}{\mathrm{O}}_{3}$ and $\ensuremath{\kappa}\text{\ensuremath{-}}\mathrm{ET}$-type organic conductors provide us with evidence for the existence of the present marginal quantum criticality.

[1]  H. Takagi,et al.  Chemical potential shift in lightly doped to optimally dopedCa2−xNaxCuO2Cl2 , 2006 .

[2]  M. Imada,et al.  Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006, cond-mat/0604395.

[3]  Y. Yamaji,et al.  Quantum Critical ''Opalescence'' around Metal-Insulator Transitions , 2006, cond-mat/0604387.

[4]  A. Georges,et al.  Breakup of the Fermi surface near the mott transition in low-dimensional systems. , 2006, Physical review letters.

[5]  F. Kagawa,et al.  Unconventional critical behaviour in a quasi-two-dimensional organic conductor , 2005, Nature.

[6]  M. Imada Universality classes of metal-insulator transitions in strongly correlated electron systems and mechanism of high-temperature superconductivity , 2005, cond-mat/0506468.

[7]  H. Fukuyama,et al.  Heat capacities of the anomalous fluid phase in two-dimensional 3He , 2005 .

[8]  A. Einstein,et al.  Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes [AdP 33, 1275 (1910)] , 2005, Annalen der Physik.

[9]  G. Kotliar,et al.  Dynamical breakup of the fermi surface in a doped Mott insulator. , 2004, Physical review letters.

[10]  X. Wen An introduction to quantum order, string-net condensation, and emergence of light and fermions , 2004, cond-mat/0406441.

[11]  M. Imada Quantum Mott Transition and Superconductivity , 2004, cond-mat/0411217.

[12]  K. Kanoda,et al.  NMR studies on two-dimensional molecular conductors and superconductors: Mott transition in kappa-(BEDT-TTF)2X. , 2004, Chemical reviews.

[13]  M. Imada Quantum Mott Transition and Multi-Furcating Criticality , 2004, cond-mat/0410753.

[14]  M. Imada,et al.  Precise Determination of Phase Diagram for Two-Dimensional Hubbard Model with Filling- and Bandwidth-Control Mott Transitions: Grand-Canonical Path-Integral Renormalization Group Approach , 2003, cond-mat/0312671.

[15]  F. Kagawa,et al.  Transport criticality of the first-order Mott transition in the quasi-two-dimensional organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl , 2003, cond-mat/0307304.

[16]  A. Georges,et al.  Universality and Critical Behavior at the Mott Transition , 2003, Science.

[17]  J. Nyéki,et al.  Evidence for a Mott-Hubbard transition in a two-dimensional 3He fluid monolayer. , 2003, Physical review letters.

[18]  M. Imada,et al.  Mott transitions in the two-dimensional half-filled Hubbard model: Correlator projection method with projective dynamical mean-field approximation , 2002, cond-mat/0206531.

[19]  T. Pruschke,et al.  Angle-resolved photoemission spectra of the Hubbard model , 2002 .

[20]  A. Schofield,et al.  Metamagnetic quantum criticality in metals. , 2001, Physical review letters.

[21]  M. Imada,et al.  Operator projection theory for electron differentiation in underdoped cuprate superconductors , 2001, cond-mat/0108416.

[22]  M. Imada,et al.  Theory of electron differentiation, flat dispersion andpseudogap phenomena , 2000, cond-mat/0005369.

[23]  Lange,et al.  Landau theory of the finite temperature mott transition , 2000, Physical review letters.

[24]  M. Imada,et al.  Optical conductivity of the two-dimensional Hubbard model , 1999, cond-mat/9902235.

[25]  Takehiko Mori,et al.  Structural Genealogy of BEDT-TTF-Based Organic Conductors II. Inclined Molecules: θ, α, and κ Phases , 1999 .

[26]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[27]  H. Tsunetsugu,et al.  Dynamic Exponent of t-J and t-J-W Model , 1998, cond-mat/9805002.

[28]  W. Hofstetter,et al.  Frustration of antiferromagnetism in the t‐t′‐Hubbard model at weak coupling , 1998, cond-mat/9802233.

[29]  T. Moriya,et al.  On the Metal-Insulator Transition in a Two-Dimensional Hubbard Model , 1996 .

[30]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[31]  M. Imada Metal-Insulator Transition of Correlated Systems and Origin of Unusual Metal , 1995 .

[32]  M. Imada Scaling Theory of Transitions between the Mott Insulator and Quantum Fluids , 1994 .

[33]  A. Millis,et al.  Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. , 1993, Physical review. B, Condensed matter.

[34]  M. Imada,et al.  Charge Mass Singularity in Two-Dimensional Hubbard Model , 1993 .

[35]  M. Imada,et al.  Two-Dimensional Hubbard Model –Metal Insulator Transition Studied by Monte Carlo Calculation– , 1992 .

[36]  M. Imada,et al.  Charge Gap, Charge Susceptibility and Spin Correlation in the Hubbard Model on a Square Lattice , 1991 .

[37]  Yoshinori Takahashi,et al.  Spin fluctuations in itinerant electron magnetism , 1985 .

[38]  K. Wilson The renormalization group and critical phenomena , 1983 .

[39]  C. Castellani,et al.  New Model Hamiltonian for the Metal-Insulator Transition , 1979 .

[40]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .

[41]  R. Elliott,et al.  The Ising model with a transverse field. I. High temperature expansion , 1971 .

[42]  William F. Brinkman,et al.  Application of Gutzwiller's Variational Method to the Metal-Insulator Transition , 1970 .

[43]  J. Hubbard,et al.  Electron correlations in narrow energy bands III. An improved solution , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  J. Hubbard,et al.  Electron correlations in narrow energy bands. II. The degenerate band case , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  M. Smoluchowski Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen , 1908 .