Flatness of nonlinear control systems and exterior differential systems

Necessary and sufficient conditions for k-flatness are given. We construct an exterior differential system (I, Θ) and show that (local) k-flatness is equivalent to the existence of (local) integral manifolds of (I, Θ), which is in turn equivalent to the existence of a solution of a partial differential equation. As a consequence, the k-flatness of a nonlinear system can be checked with convenient applications of Cartan-Kahler and Cartan-Kuranishi theorems. Some academic examples are presented to illustrate the result.

[1]  M. Kuranishi ON E. CARTAN'S PROLONGATION THEOREM OF EXTERIOR DIFFERENTIAL SYSTEMS.* , 1957 .

[2]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[3]  Louis R. Hunt,et al.  Design for Multi-Input Nonlinear Systems , 1982 .

[4]  Jessy W. Grizzle,et al.  Rank invariants of nonlinear systems , 1989 .

[5]  S. Chern,et al.  Exterior Differential Systems , 1990 .

[6]  Philippe Martin Contribution a l'etude des systemes differentiellement plats , 1992 .

[7]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[8]  M. Fliess,et al.  Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .

[9]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[10]  Jean-Baptiste Pomet A differential geometric setting for dynamic equivalence and dynamic linearization , 1995 .

[11]  Joachim Rudolph,et al.  Well-formed dynamics under quasi-static state feedback , 1995 .

[12]  Jean-Baptiste Pomet On dynamic feedback linearization of four-dimensional affine control systems with two inputs , 1997, ESAIM: Control, Optimisation and Calculus of Variations.

[13]  Emmanuel Delaleau,et al.  Filtrations in feedback synthesis: Part I – Systems and feedbacks , 1998 .

[14]  M. Fliess,et al.  Some open questions related to flat nonlinear systems , 1999 .

[15]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..