The Cosserat surface as a shell model, theory and finite-element formulation

Relying on the concept of a Cosserat continuum, the reduction of the three-dimensional equations of a shell body to two-dimensions is carried out in a direct manner by considering the Cosserat continuum to be a two-dimensional surface. By that, a non-linear shell theory, including transverse shear strains, with exact description of the kinematical fields is derived. The strain measures are taken to be the first and the second Cosserat deformation tensors allowing for an explicit use of a three parametric rotation tensor. Thus, inplane rotations, also called drilling degrees of freedom, are included in a natural way. The structure of the configuration space is discussed and two possible definitions of it are given equipped once with a Killing metric and once with an Euclidean one. A partially mixed variational principle is proposed on the base of which an efficient hybrid finite-element formulation, which does not exhibit locking phenomena, is developed. Various numerical examples of shell deformations at finite rotations, with excellent element performance, are presented.

[1]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[2]  D. W. Scharpf,et al.  The SHEBA Family of Shell Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[3]  E. Reissner,et al.  A note on two-dimensional finite-deformation theories of shells , 1982 .

[4]  David Hestenes New Foundations for Classical Mechanics , 1986 .

[5]  R. Hsieh,et al.  Mechanics of micropolar media , 1982 .

[6]  C. Sansour,et al.  Shells at finite rotations with drilling degrees of freedom, theory and finite-element formulation , 1991 .

[7]  Janusz Badur,et al.  Finite rotations in the description of continuum deformation , 1983 .

[8]  W. Pietraszkiewicz Finite Rotations in Structural Mechanics , 1986 .

[9]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[10]  W. Wunderlich Nonlinear Finite Element Analysis in Structural Mechanics , 1981 .

[11]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[12]  J. G. Simmonds,et al.  Nonlinear Elastic Shell Theory , 1983 .

[13]  A.J.M. Spencer,et al.  Theory of invariants , 1971 .

[14]  J. C. Simo,et al.  The (symmetric) Hessian for geometrically nonlinear models in solid mechanics: intrinsic definition and geometric interpretation , 1992 .

[15]  J. Z. Zhu,et al.  The finite element method , 1977 .

[16]  P. M. Naghdi,et al.  A general theory of a Cosserat surface , 1965 .

[17]  W. C. Schnobrich Thin Shell Structures , 1985 .

[18]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[19]  Carlo Sansour,et al.  An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation , 1992 .

[20]  J. Argyris An excursion into large rotations , 1982 .

[21]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[22]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[23]  M. De Handbuch der Physik , 1957 .

[24]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[25]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[26]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[27]  W. Günther,et al.  Analoge Systeme von Schalengleichungen , 1961 .

[28]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[29]  J. C. Simo,et al.  A drill rotation formulation for geometrically exact shells , 1992 .

[30]  G. F. Smith On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors , 1971 .

[31]  J. Chróścielewski,et al.  Genuinely resultant shell finite elements accounting for geometric and material non-linearity , 1992 .

[32]  Pavel A. Zhilin,et al.  Mechanics of deformable directed surfaces , 1976 .

[33]  Choquet Bruhat,et al.  Analysis, Manifolds and Physics , 1977 .

[34]  Clifford Ambrose Truesdell,et al.  Exact theory of stress and strain in rods and shells , 1957 .

[35]  A. Cental Eringen,et al.  Part I – Polar Field Theories , 1976 .

[36]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[37]  R. Harte,et al.  Derivation of geometrically nonlinear finite shell elements via tensor notation , 1986 .

[38]  H. Cohen,et al.  Nonlinear theory of elastic directed surfaces. , 1966 .

[39]  J. Makowski,et al.  Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation , 1990 .

[40]  W. Wunderlich,et al.  Rotations as primary unknowns in the nonlinear theory of shells and corresponding finite element models , 1986 .