An integral equation approach to two-dimensional incompressible resistive magnetohydrodynamics

In the present work, an integral equation approach is developed to solve two-dimensional incompressible resistive magnetohydrodynamic equations. This approach is examined by simulating the magnetic reconnection driven by the Orszag–Tang vortex and the doubly periodic coalescence instability. The results show that when the viscosity and magnetic resistivity of the plasma are reduced, the current sheet forming in the magnetic reconnection driven by the Orszag–Tang vortex becomes thinner. In comparison with the spectral method, the integral equation approach has much better accuracy and convergence.

[1]  Paul J. Dellar,et al.  Lattice Boltzmann magnetohydrodynamics with current-dependent resistivity , 2013, J. Comput. Phys..

[2]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[3]  H. Strauss,et al.  Reconnection of coalescing magnetic islands , 1999 .

[4]  Carl R. Sovinec,et al.  Analysis of a mixed semi-implicit/implicit algorithm for low-frequency two-fluid plasma modeling , 2010, J. Comput. Phys..

[5]  Dieter Biskamp,et al.  Magnetic reconnection in plasmas , 2000 .

[6]  R. Samtaney,et al.  Formation of plasmoid chains in magnetic reconnection. , 2009, Physical review letters.

[7]  Mingtian Xu,et al.  Integral equation approach to time-dependent kinematic dynamos in finite domains. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[9]  F. Stefani,et al.  The integral equation method for a steady kinematic dynamo problem , 2004 .

[10]  E. Priest,et al.  New models for fast steady state magnetic reconnection , 1986 .

[11]  I. Craig,et al.  Visco–Resistive Dissipation in Transient Reconnection Driven by the Orszag–Tang Vortex , 2013 .

[12]  J B Taylor,et al.  Relaxation and magnetic reconnection in plasmas , 1986 .

[13]  D. Uzdensky Petschek-like Reconnection with Current-driven Anomalous Resistivity and Its Application to Solar Flares , 2002, astro-ph/0212398.

[14]  M. Berberan-Santos Green’s function method and the first-order linear differential equation , 2010 .

[15]  Carol S. Woodward,et al.  A fully implicit numerical method for single-fluid resistive magnetohydrodynamics , 2006, J. Comput. Phys..

[16]  Ramon Codina,et al.  Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations , 2006 .

[17]  P. Dellar Lattice Kinetic Schemes for Magnetohydrodynamics , 2002 .

[18]  Yi-Min Huang,et al.  Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime , 2010, 1003.5951.

[19]  Mingtian Xu,et al.  The integral equation approach to kinematic dynamo theory and its application to dynamo experiments in cylindrical geometry , 2006, J. Comput. Phys..

[20]  E. N. Parker,et al.  THE SOLAR FLARE PHENOMENON AND THE THEORY OF RECONNECTION AND ANNIHILATION OF MAGNETIC FIELDS , 1963 .

[21]  M. Ugai,et al.  Magnetic field-line reconnexion by localized enhancement of resistivity: Part 1. Evolution in a compressible MHD fluid , 1977, Journal of Plasma Physics.

[22]  R. Hide Cosmical magnetic fields , 1978, Nature.

[23]  P. Sweet 14. The neutral point theory of solar flares , 1958 .

[24]  A. A. Schekochihin,et al.  Instability of current sheets and formation of plasmoid chains , 2007 .

[25]  R. Kulsrud Magnetic reconnection: Sweet-Parker versus Petschek , 2000, astro-ph/0007075.

[26]  I. Craig,et al.  Time-dependent magnetic reconnection in two-dimensional periodic geometry , 2000 .

[27]  J. Dawson Particle simulation of plasmas , 1983 .

[28]  Harry E. Petschek,et al.  Magnetic Field Annihilation , 1963 .

[29]  Luis Chacon,et al.  An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .

[30]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[31]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[32]  P. Cassak,et al.  Scaling of Sweet-Parker reconnection with secondary islands , 2009 .

[33]  R. Kulsrud,et al.  Magnetic reconnection in a magnetohydrodynamic plasma , 1998 .

[34]  Reconnection in a weakly stochastic field , 1998, astro-ph/9811037.

[35]  Paul T. Lin,et al.  Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..

[36]  Yi-Min Huang,et al.  Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability , 2009, 0906.5599.