Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach
暂无分享,去创建一个
Paola Costamagna | Antonio Barbucci | Giacomo Cerisola | Marco Panizza | P. Costamagna | M. Panizza | A. Barbucci | G. Cerisola
[1] O. J. Velle,et al. The electrode system ‖ZrO2: 8Y2O3 investigated by impedence spectroscopy , 1991 .
[2] D. Dees,et al. Conductivity of porous Ni/ZrO/sub 2/-Y/sub 2/O/sub 3/ cermets , 1987 .
[3] Wenzhao Li,et al. The Role of 8 mol % Yttria Stabilized Zirconia in the Improvement of Electrochemical Performance of Lanthanum Manganite Composite Electrodes , 1998 .
[4] M. Nishiya,et al. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells , 1992 .
[5] Elisabetta Arato,et al. Some more considerations on the optimization of cermet solid oxide fuel cell electrodes , 1998 .
[6] Mogens Bjerg Mogensen,et al. Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy , 1999 .
[7] M. Kleitz,et al. Electrocatalysis and inductive effects at the gas, Pt/stabilized zirconia interface , 1987 .
[8] S. Redner,et al. Introduction To Percolation Theory , 2018 .
[9] Meilin Liu,et al. Silver-BaCe{sub 0.8}Gd{sub 0.2}O{sub 3} composites as cathode materials for SOFCs using BaCeO{sub 3}-based electrolytes , 1996 .
[10] Svein Sunde,et al. Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .
[11] M. Mogensen,et al. Performance/structure correlation for composite SOFC cathodes , 1996 .
[12] Chiaki Kuroda,et al. A new equivalent circuit for Pt/YSZ of a solid oxide electrolyte fuel cell: Relation between the model parameters and the interface characteristics , 1990 .
[13] C. Park,et al. Medium-temperature performance of cermet electrode containing Ag and 3Bi2O3·WO3 , 1995 .
[14] A. Hammouche,et al. Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .
[15] John A. Kilner,et al. Optimisation of composite cathodes for intermediate temperature SOFC applications , 1999 .
[16] P. Gupta,et al. Rigidity and conductivity percolation thresholds in particulate composites , 1995 .
[17] Wolfgang Göpel,et al. Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1,MnO3/YSZ Electrodes , 1995 .
[18] Christopher Yang,et al. FUEL CELLS: Reaching the Era of Clean and Efficient Power Generation in the Twenty-First Century , 1999 .
[19] Henricus J.M. Bouwmeester,et al. Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia II. Electrode Kinetics , 1997 .
[20] S. Osawa,et al. High Temperature Air Cathodes Containing Ion Conductive Oxides , 1991 .
[21] Koji Amano,et al. Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part II: Electrochemical measurements and analysis , 1987 .
[22] V. Antonucci,et al. Micro-modelling of solid oxide fuel cell electrodes , 1998 .
[23] S. Bebelis,et al. Electrochemical promotion (NEMCA) of CH4 and C2H4 oxidation on Pd/YSZ and investigation of the origin of NEMCA via AC impedance spectroscopy , 2000 .
[24] J. Giner,et al. The Mechanism of Operation of the Teflon‐Bonded Gas Diffusion Electrode: A Mathematical Model , 1969 .
[25] H. Inoue,et al. Microstructure of Pt electrodes over solid-electrolyte and its effects on interfacial impedance , 1989 .
[26] F. Lange,et al. Relation between percolation and particle coordination in binary powder mixtures , 1991 .
[27] M. Mogensen,et al. Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition , 1995 .