Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media

Abstract In this work, we propose an extension of the phase field model for the modeling of hydraulic fracturing or cracking in heterogeneous saturated porous media. The involved extensions comprise: (a) taking into account interfacial damage between the inclusions and the matrix; (b) modeling fluid flow within both matrix cracks and interfacial cracks; (c) the possibility to handle geometries of the heterogeneous media in the form of regular grids of voxels e.g. as obtained from experimental imaging techniques. The developed numerical framework is based on the phase field method with a regularized description of both bulk and interface discontinuities, extended to a fully coupled hydro-mechanical framework. Both 2D and 3D examples are presented for hydro-mechanical microcracking initiation and propagation in voxel-based models of complex heterogeneous media with interfacial damage between the inclusions and the matrix.

[1]  A. Khoei,et al.  Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method , 2013 .

[2]  Adnan Ibrahimbegovic,et al.  Discrete element model for the analysis of fluid- saturated fractured poro-plastic medium based on sharp crack representation with embedded strong discontinuities , 2016 .

[3]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[4]  Blaise Bourdin,et al.  A VARIATIONAL APPROACH TO THE MODELING AND NUMERICAL SIMULATION OF HYDRAULIC FRACTURING UNDER IN-SITU STRESSES , 2013 .

[5]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[6]  Julien Yvonnet,et al.  A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography , 2016 .

[7]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[8]  A. Khristianovic Zheltov,et al.  3. Formation of Vertical Fractures by Means of Highly Viscous Liquid , 1955 .

[9]  Christian Miehe,et al.  Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media , 2016 .

[10]  Emmanuel M Detournay,et al.  An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag , 2007 .

[11]  Peter Grassl,et al.  A lattice approach to model flow in cracked concrete , 2008, 0809.2758.

[12]  Bernhard A. Schrefler,et al.  A method for 3-D hydraulic fracturing simulation , 2012, International Journal of Fracture.

[13]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[14]  W. Gibbs,et al.  Finite element methods , 2017, Graduate Studies in Mathematics.

[15]  Emmanuel M Detournay,et al.  Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks , 2004 .

[16]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[17]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[18]  René de Borst,et al.  A large deformation formulation for fluid flow in a progressively fracturing porous material , 2013 .

[19]  Daniel R. Burns,et al.  Reservoir Simulation with the Finite Element Method Using Biot Poroelastic Approach , 2003 .

[20]  M. Wheeler,et al.  A quasi-static phase-field approach to pressurized fractures , 2015 .

[21]  Thomas Wick,et al.  Coupling fluid-structure interaction with phase-field fracture , 2016, J. Comput. Phys..

[22]  T. T. Nguyen,et al.  On the choice of parameters in the phase field method for simulating crack initiation with experimental validation , 2016, International Journal of Fracture.

[23]  Jean Sulem,et al.  Stress dependent thermal pressurization of a fluid-saturated rock , 2008, 0808.3886.

[24]  W. Spaans The finite element methods , 1975 .

[25]  Min Wang,et al.  Numerical investigation of initiation and propagation of hydraulic fracture using the coupled Bonded ParticleLattice Boltzmann Method , 2017 .

[26]  Peter Grassl,et al.  On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture , 2014, 1411.7901.

[27]  Emmanuel M Detournay,et al.  The Tip Region of a Fluid-Driven Fracture in an Elastic Medium , 2000 .

[28]  A. Tang,et al.  Poroelasticity of the Callovo–Oxfordian Claystone , 2017, Rock Mechanics and Rock Engineering.

[29]  Jean-Jacques Marigo,et al.  Morphogenesis and propagation of complex cracks induced by thermal shocks , 2013 .

[30]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[31]  Julien Yvonnet,et al.  A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure , 2015 .

[32]  Coskun Unan,et al.  The update of KAYDER information system for igneous rock data in Turkey , 1993 .

[33]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[34]  Cv Clemens Verhoosel,et al.  A phase‐field model for cohesive fracture , 2013 .

[35]  Christian Miehe,et al.  Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Coupled Brittle-to-Ductile Failure Criteria and Crack Propagation in Thermo-Elastic-Plastic Solids , 2015 .

[36]  P. W. Sharp,et al.  Self-similar solutions for elastohydrodynamic cavity flow , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  Mary F. Wheeler,et al.  Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model , 2016 .

[38]  Thomas J. Boone,et al.  A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .

[39]  Julien Réthoré,et al.  A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks , 2008 .

[40]  C. Miehe,et al.  Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture , 2015 .

[41]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[42]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[43]  D. Adhikary,et al.  Hydraulic Fracture Simulation Based on Coupled Discrete Element Method and Lattice Boltzmann Method , 2014 .

[44]  Mary F. Wheeler,et al.  Phase-field modeling of a fluid-driven fracture in a poroelastic medium , 2015, Computational Geosciences.

[45]  Julien Yvonnet,et al.  Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations , 2016 .

[46]  Pathegama Gamage Ranjith,et al.  A review of studies on CO2 sequestration and caprock integrity , 2010 .

[47]  J. Sulem,et al.  The Effect of Undrained Heating on a Fluid-saturated Hardened Cement Paste , 2008, 0810.1810.

[48]  Julien Réthoré,et al.  A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium , 2006 .

[49]  Carlos Armando Duarte,et al.  Simulation of non‐planar three‐dimensional hydraulic fracture propagation , 2014 .

[50]  A. Khoei,et al.  An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model , 2013 .

[51]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[52]  Zdeněk P. Bažant,et al.  Why Fracking Works , 2014 .

[53]  P. Cundall,et al.  Application of particle and lattice codes to simulation of hydraulic fracturing , 2016 .

[54]  M. Biot Theory of finite deformations of porous solids , 1972 .

[55]  Christian Miehe,et al.  Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids , 2015 .

[56]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[57]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[58]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..