Electrodeposition of kesterite thin films for photovoltaic applications: Quo vadis?

This paper aims at providing an updated overview of the main achievements in the development of solar cells based on Cu2ZnSn(S,Se)4 (CZTS(Se)) kesterite absorbers obtained by electrodeposition. Although undoubtedly challenging, the ultimate goal is to learn from the past works and build a solid framework for future advances in this field. What is the reason for the lower efficiency of electrodeposited CZTS(Se)‐based devices (8%) compared to the world record efficiency achieved with a hydrazine‐based solution approach (12.6%)? Can this gap be filled, or there are intrinsic limitations for this achievement? The review is divided into the three main electrodeposition approaches: sequential elemental layer, alloy co‐deposition, and chalcogenide co‐deposition. It is argued that considerable technical challenges must be overcome for the latter approach to be successfully applied.

[1]  R. Bhattacharya 3.6%-CZTSS Device Fabricated From Ionic Liquid Electrodeposited Sn Layer , 2014 .

[2]  P. Dale,et al.  CHAPTER 5: Thin-film Photovoltaics Based on Earth-abundant Materials , 2014 .

[3]  Lihong Yang,et al.  A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell , 2014 .

[4]  M. Mathe,et al.  Electrodeposited Cu2ZnSnS4 thin films , 2014 .

[5]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[6]  F. Jiang,et al.  Pure Sulfide Cu2ZnSnS4 Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack , 2014 .

[7]  J. Y. Kim,et al.  Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition. , 2014, ChemSusChem.

[8]  M. Guennou,et al.  Quantification of surface ZnSe in Cu2ZnSnSe4-based solar cells by analysis of the spectral response , 2014 .

[9]  S. Pawar,et al.  Structural, morphological, compositional, and optical properties of single step electrodeposited Cu2ZnSnS4 (CZTS) thin films for solar cell application , 2014 .

[10]  Muhammad Akhyar Farrukh,et al.  Dependence of the properties of copper zinc tin sulfide thin films prepared by electrochemical deposition on sulfurization temperature , 2014, Journal of Materials Science: Materials in Electronics.

[11]  P. Dale,et al.  Tuning the gallium content of metal precursors for Cu(In,Ga)Se2 thin film solar cells by electrodeposition from a deep eutectic solvent. , 2014, Physical chemistry chemical physics : PCCP.

[12]  V. Deline,et al.  Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency , 2014 .

[13]  J. Y. Kim,et al.  Preparation of Cu2ZnSnS4 thin films via electrochemical deposition and rapid thermal annealing , 2013 .

[14]  Rommel Noufi,et al.  The state and future prospects of kesterite photovoltaics , 2013 .

[15]  Marc Meuris,et al.  Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells , 2013 .

[16]  J. Yun,et al.  Electrosynthesis of CZTS films by sulfurization of CZT precursor: Effect of soft annealing treatment , 2013 .

[17]  J. Yun,et al.  Pulsed electrodeposited CZTS thin films: Effect of duty cycle , 2013 .

[18]  Enn Mellikov,et al.  Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers , 2013, Journal of Crystal Growth.

[19]  G. Cheng,et al.  Laser assisted electro-deposition of earth abundant Cu2ZnSnS4 photovoltaic thin film , 2013 .

[20]  J. Pi,et al.  Synthesis of Cu2ZnSnS4 films from sequentially electrodeposited Cu–Sn–Zn precursors and their structural and optical properties , 2013, Journal of Materials Science: Materials in Electronics.

[21]  K. Sivula,et al.  Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. , 2013, ACS applied materials & interfaces.

[22]  Hao Wang,et al.  Cu2ZnSnSe4 thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu–Zn–Sn precursors , 2013 .

[23]  S. Ikeda,et al.  Fabrication of Cu2ZnSnSe4 thin films from an electrodeposited Cu-Zn-Sn-Se/Cu-Sn-Se bilayer , 2013 .

[24]  S. Abermann,et al.  Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells , 2013 .

[25]  Enn Mellikov,et al.  Formation of Cu2ZnSnS4 absorber layers for solar cells by electrodeposition-annealing route , 2013 .

[26]  P. Dale,et al.  Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence , 2013 .

[27]  S. Miao,et al.  Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu–Zn–Sn–Se precursors , 2013 .

[28]  Enn Mellikov,et al.  Selenisation of sequentially electrodeposited Cu–Zn and Sn precursor layers , 2013 .

[29]  Yixin Lin,et al.  Electrochemical synthesis of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for solar cells , 2013, 2013 International Renewable and Sustainable Energy Conference (IRSEC).

[30]  Hans Flandorfer,et al.  The Cu–Sn phase diagram part II: New thermodynamic assessment , 2013 .

[31]  P. Dale,et al.  Direct Synthesis of Single-Phase p-Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells , 2013 .

[32]  Farjana J. Sonia,et al.  Structural and optical properties of electrochemically grown highly crystalline Cu2ZnSnS4 (CZTS) thin films , 2013 .

[33]  Honglie Shen,et al.  Quaternary co-electrodeposition of the Cu2ZnSnS4 films as potential solar cell absorbers , 2013, Journal of Materials Science: Materials in Electronics.

[34]  S. Ikeda,et al.  Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure , 2013 .

[35]  M. Edoff,et al.  A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells. , 2012, Journal of the American Chemical Society.

[36]  Phillip J Dale,et al.  Thermodynamic aspects of the synthesis of thin-film materials for solar cells. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  R. Bhattacharya,et al.  Cu-Zn-Sn-S Thin Films from Electrodeposited Metallic Precursor Layers , 2012 .

[38]  S. Siebentritt,et al.  Kesterites—a challenging material for solar cells , 2012 .

[39]  Supratik Guha,et al.  Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier , 2012 .

[40]  Ping Liu,et al.  Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route , 2012 .

[41]  Weifeng Liu,et al.  The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route , 2012 .

[42]  G. Niaura,et al.  A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells , 2012 .

[43]  M. Islam,et al.  Formation of Cu3BiS3 thin films via sulfurization of Bi-Cu metal precursors , 2012 .

[44]  F. A. Pulgarin-Agudelo,et al.  Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells. , 2012, Journal of the American Chemical Society.

[45]  L. Rui,et al.  Preparing Cu2ZnSnS4 films using the co-electro-deposition method with ionic liquids , 2012 .

[46]  L. Romankiw,et al.  A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell , 2012 .

[47]  Chi-Woo Lee,et al.  Progress in electrodeposited absorber layer for CuIn(1−x)GaxSe2 (CIGS) solar cells , 2011 .

[48]  Marika Edoff,et al.  Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing , 2011 .

[49]  J. Scragg Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Synthesis and Characterisation by Electrochemical Methods , 2011 .

[50]  S. Zuo,et al.  Synthesis and characterization of co-electroplated Cu2ZnSnS4 thin films as potential photovoltaic material , 2011 .

[51]  Jinzhang Xu,et al.  Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated Cu–Zn–Sn precursors , 2011 .

[52]  T. Shimizu,et al.  Cu2ZnSnS4 thin films and nanowires prepared by different single-step electrodeposition method in quaternary electrolyte , 2011 .

[53]  L. Ribeaucourt,et al.  Electrochemical study of one-step electrodeposition of copper–indium–gallium alloys in acidic conditions as precursor layers for Cu(In,Ga)Se2 thin film solar cells , 2011 .

[54]  P. Dale,et al.  Applications of Electrochemistry in the Fabrication and Characterization of Thin‐Film Solar Cells , 2011 .

[55]  J. W. Dini,et al.  Electrodeposition of Copper , 2011 .

[56]  Susanne Siebentritt,et al.  Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[57]  P. Dale,et al.  The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.

[58]  Jun Kubota,et al.  Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating , 2011 .

[59]  S. Pawar,et al.  Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films , 2010 .

[60]  Enn Mellikov,et al.  Formation of Cu2ZnSnSe4 thin films by selenization of electrodeposited stacked binary alloy layers , 2010 .

[61]  P. Dale,et al.  A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers , 2010 .

[62]  J. Yun,et al.  Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application , 2010 .

[63]  Rajib Ghosh Chaudhuri,et al.  Synthesis of sulfur nanoparticles in aqueous surfactant solutions. , 2010, Journal of colloid and interface science.

[64]  C. Surya,et al.  Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids , 2010 .

[65]  B. Basol,et al.  Status of electroplating based CIGS technology development , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[66]  Hideaki Araki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors , 2009 .

[67]  M. Kurihara,et al.  Kesterite absorber layer uniformity from electrodeposited pre‐cursors , 2009 .

[68]  M. Yamazaki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors , 2009 .

[69]  P. Dale,et al.  Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route , 2009 .

[70]  A. Ennaoui,et al.  Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective , 2009 .

[71]  A. Ennaoui,et al.  The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors , 2009 .

[72]  Xuezhao Shi,et al.  Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material , 2009 .

[73]  M. Yamazaki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers , 2008 .

[74]  I. Forbes,et al.  New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material , 2008 .

[75]  Sinn-wen Chen,et al.  Phase equilibria of the Sn–Zn–Cu ternary system , 2006 .

[76]  Daniel Lincot,et al.  Electrodeposition of semiconductors , 2005 .

[77]  M. D. Almeida,et al.  Study and development of an alkaline bath for copper deposition containing sorbitol as complexing agent and morphological characterization of the copper film , 2005 .

[78]  Daniel Lincot,et al.  Chalcopyrite thin film solar cells by electrodeposition , 2004 .

[79]  I. Olekseyuk,et al.  Phase equilibria in the Cu2S–ZnS–SnS2 system , 2004 .

[80]  L. Piskach,et al.  Phase equilibria in the Cu2SnSe3–SnSe2–ZnSe system , 2003 .

[81]  Daniel W. Cunningham,et al.  Cadmium telluride PV module manufacturing at BP Solar , 2002 .

[82]  L. Kronik,et al.  Interface redox engineering of Cu(In,Ga)Se2 – based solar cells: oxygen, sodium, and chemical bath effects ☆ , 2000 .

[83]  A. Rockett The Electronic effects of point defects in Cu(InxGa1−x)Se2 , 2000 .

[84]  Tohru Watanabe Formation of metastable phases by the plating method , 1994 .

[85]  P. Spencer,et al.  Thermodynamic reevaluation of the Cu-Zn system , 1993 .

[86]  B. Basol,et al.  Deposition of CuInSe/sub 2/ films by a two-stage process utilizing E-beam evaporation , 1990 .

[87]  E. Fatas,et al.  Voltammetric study of the electrodeposition of CdS films from propylene carbonate solutions , 1988 .

[88]  F. A. Kröger Cathodic Deposition and Characterization of Metallic or Semiconducting Binary Alloys or Compounds , 1978 .

[89]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[90]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[91]  Sandra Maurer,et al.  Fundamentals Of Analytical Chemistry , 2016 .

[92]  G. Niaura,et al.  Characterization of Cu2ZnSnSe4 solar cells prepared from electrochemically co-deposited Cu–Zn–Sn alloy , 2015 .

[93]  R. Inguanta,et al.  Electrochemical Deposition of CZTS Thin Films on Flexible Substrate , 2014 .

[94]  P. Dale,et al.  Thin-film Photovoltaics Based on Earth-abundant Materials , 2014 .

[95]  M. V. Gapanovich,et al.  Synthesis of thin Cu–Zn–Sn–S films for solar batteries by one-stage electrodeposition followed by annealing in a reactive atmosphere , 2014 .

[96]  Yixin Lin,et al.  Mechanistic aspects of preheating effects of electrodeposited metallic precursors on structural and photovoltaic properties of Cu2ZnSnS4 thin films , 2014 .

[97]  P. Dale,et al.  The Effect of Soft Pre-Annealing of Differently Stacked Cu-Sn-Zn Precursors on the Quality of Cu2ZnSnSe4 Absorbers , 2013 .

[98]  P. Dale,et al.  Is it Possible to Grow Thin Films of Phase Pure Kesterite Semiconductor? A ZnSe case study , 2013 .

[99]  Elisabeth Chassaing,et al.  Electrochemical Studies of One-Step Electrodeposition of Cu-Sn-Zn Layers from Aqueous Electrolytes for Photovoltaic Applications , 2013 .

[100]  T. Chapman,et al.  Effects of organic additives on zinc electrodeposition from alkaline electrolytes , 2012, Journal of Applied Electrochemistry.

[101]  M. Free,et al.  CZTS thin films on transparent conducting electrodes by electrochemical technique , 2012 .

[102]  S. Shingubara,et al.  Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: Effect of complexing agent volume , 2011 .

[103]  L. Romankiw,et al.  The Next Frontier: Electrodeposition for Solar Cell Fabrication , 2011 .

[104]  A. Survila,et al.  Electrochemical determination of Sn(IV)/Sn(II) ratio in tin sol formed in copper–tin sulphate solution containing laprol 2402C , 2002 .

[105]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .