Localization of Compact Invariant Sets of Discrete-Time nonlinear Systems

In this paper, we examine the localization problem of compact invariant sets of discrete-time nonlinear systems. The localization procedure consists in applying the iterative algorithm based on the extremum condition. An analysis of a location of compact invariant sets of the Henon system is realized for all values of its parameters.

[1]  Konstantin E. Starkov Estimation of the Domain Containing All Compact Invariant Sets of the Optically Injected Laser System , 2007, Int. J. Bifurc. Chaos.

[2]  Peter Swinnerton-Dyer,et al.  Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions , 2001 .

[3]  S. K. Korovin,et al.  Localization of invariant compact sets of discrete systems , 2010 .

[4]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[5]  Alexander P. Krishchenko,et al.  Localization of compact invariant sets of the Lorenz system , 2006 .

[6]  H. Nijmeijer,et al.  An ultimate bound on the trajectories of the Lorenz system and its applications , 2003 .

[7]  Konstantin E. Starkov,et al.  Bounds for compact invariant sets of the system describing dynamics of the nuclear spin generator , 2009 .

[8]  Alexander P. Krishchenko,et al.  Localization of Compact Invariant Sets of Nonlinear Systems with Applications to the Lanford System , 2006, Int. J. Bifurc. Chaos.

[9]  Alexander P. Krishchenko,et al.  Estimations of domains with cycles , 1997 .

[10]  K. Starkov Bounds for a domain containing all compact invariant sets of the system describing the laser–plasma interaction , 2009 .

[11]  Guanrong Chen,et al.  Estimating the bounds for the Lorenz family of chaotic systems , 2005 .

[12]  Konstantin E. Starkov,et al.  Bounding a domain containing all compact invariant sets of the permanent-magnet motor system , 2009 .

[13]  J. Hurt Some Stability Theorems for Ordinary Difference Equations , 1967 .

[14]  Alexander P. Krishchenko,et al.  Localization of Compact Invariant Sets of Nonlinear Time-Varying Systems , 2008, Int. J. Bifurc. Chaos.

[15]  K. Starkov Compact invariant sets of the static spherically symmetric Einstein–Yang–Mills equations , 2010 .

[16]  Alexander P. Krishchenko,et al.  Localization of invariant compact sets of nonautonomous systems , 2009 .

[17]  Konstantin E. Starkov Bounding a Domain that contains All Compact Invariant Sets of the Bloch System , 2009, Int. J. Bifurc. Chaos.