The isotopic biosignatures of photo‐ vs. thiotrophic bivalves: are they preserved in fossil shells?

Symbiont‐bearing and non‐symbiotic marine bivalves were used as model organisms to establish biosignatures for the detection of distinctive symbioses in ancient bivalves. For this purpose, the isotopic composition of lipids (δ13C) and bulk organic shell matrix (δ13C, δ34S, δ15N) from shells of several thiotrophic, phototrophic, or non‐symbiotic bivalves were compared (phototrophic: Fragum fragum, Fragum unedo, Tridacna maxima; thiotrophic: Codakia tigerina, Fimbria fimbriata, Anodontia sp.; non‐symbiotic: Tapes dorsatus, Vasticardium vertebratum, Scutarcopagia sp.). ∆13C values of bulk organic shell matrices, most likely representing mainly original shell protein/chitin biomass, were depleted in thio‐ and phototrophic bivalves compared to non‐symbiotic bivalves. As the bulk organic shell matrix also showed a major depletion of δ15N (down to –2.2 ‰) for thiotrophic bivalves, combined δ13C and δ15N values are useful to differentiate between thio‐, phototrophic, and non‐symbiotic lifestyles. However, the use of these isotopic signatures for the study of ancient bivalves is limited by the preservation of the bulk organic shell matrix in fossils. Substantial alteration was clearly shown by detailed microscopic analyses of fossil (late Pleistocene) T. maxima and Trachycardium lacunosum shell, demonstrating a severe loss of quantity and quality of bulk organic shell matrix with time. Likewise, the composition and δ13C‐values of lipids from empty shells indicated that a large part of these compounds derived from prokaryotic decomposers. The use of lipids from ancient shells for the reconstruction of the bivalve's life style therefore appears to be restricted.

[1]  J. Lucas Giant clams , 2014, Current Biology.

[2]  G. Vermeij The evolution of molluscan photosymbioses: a critical appraisal , 2013 .

[3]  T. Moens,et al.  Food sources of macrobenthos in an estuarine seagrass habitat (Zostera noltii) as revealed by dual stable isotope signatures , 2013 .

[4]  Myriam D. Callier,et al.  Spatial distribution and nutritional requirements of the endosymbiont-bearing bivalve Loripes lacteus (sensu Poli, 1791) in a Mediterranean Nanozostera noltii (Hornemann) meadow , 2013 .

[5]  P. Dando,et al.  BACTERIAL SYMBIOSIS IN SYSSITOMYA POURTALESIANA OLIVER, 2012 (GALEOMMATOIDEA: MONTACUTIDAE), A BIVALVE COMMENSAL WITH THE DEEP-SEA ECHINOID POURTALESIA , 2013 .

[6]  M. Radmacher,et al.  Immobilisation and characterisation of the demineralised, fully hydrated organic matrix of nacre--an atomic force microscopy study. , 2012, Micron.

[7]  V. Thiel,et al.  The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea. , 2012, FEMS microbiology ecology.

[8]  M. Taviani,et al.  Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines , 2012 .

[9]  J. Eiler Paleoclimate reconstruction using carbonate clumped isotope thermometry , 2011 .

[10]  K. Knöller,et al.  Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification , 2011 .

[11]  Hong Yang,et al.  Variation in n-alkane δD values from terrestrial plants at high latitude: Implications for paleoclimate reconstruction , 2011 .

[12]  J. Halfar,et al.  Reconstructing mid- to high-latitude marine climate and ocean variability using bivalves, coralline algae, and marine sediment cores from the Northern Hemisphere , 2011 .

[13]  G. Cabioch,et al.  Bathymetric zonation of modern microborers in dead coral substrates from New Caledonia. Implications for paleodepth reconstructions in Holocene corals , 2009 .

[14]  N. Sheldon,et al.  Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols , 2009 .

[15]  L. Kirkendale Their Day in the Sun: molecular phylogenetics and origin of photosymbiosis in the ‘other’ group of photosymbiotic marine bivalves (Cardiidae: Fraginae) , 2009 .

[16]  N. Dubilier,et al.  Symbiotic diversity in marine animals: the art of harnessing chemosynthesis , 2008, Nature Reviews Microbiology.

[17]  J. Peckmann,et al.  Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities , 2007 .

[18]  T. Yamanaka,et al.  Stable isotope evidence for identification of chemosynthesis-based fossil bivalves associated with cold-seepages , 2007 .

[19]  H. Schmidt,et al.  A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material. , 2006, Rapid communications in mass spectrometry : RCM.

[20]  T. Treude,et al.  Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. , 2006, Environmental microbiology.

[21]  S. Golubić,et al.  Endolithic fungi in marine ecosystems. , 2005, Trends in microbiology.

[22]  M. Hoppert,et al.  Colonization strategies of lithobiontic microorganisms on carbonate rocks , 2004 .

[23]  S. Dufour,et al.  Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin , 2004 .

[24]  G. Gadd,et al.  Fungal involvement in bioweathering and biotransformation of rocks and minerals , 2003, Mineralogical Magazine.

[25]  S. Macko,et al.  Analysis of δ13C, δ15N, and δ34S in organic matter from the biominerals of modern and fossil Mercenaria spp. , 2003 .

[26]  F. Tabita,et al.  Kinetic isotope effect and characterization of form II RubisCO from the chemoautotrophic endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila , 2003 .

[27]  J. Waterbury,et al.  Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). , 2002, International journal of systematic and evolutionary microbiology.

[28]  J. G. Carter,et al.  EVOLUTION AND PHYLOGENETIC SIGNIFICANCE OF CARDIOIDEAN SHELL MICROSTRUCTURE (MOLLUSCA, BIVALVIA) , 2001, Journal of Paleontology.

[29]  E. Savazzi A review of symbiosis in the Bivalvia, with special attention to macrosymbiosis , 2001 .

[30]  T. Lajeunesse,et al.  Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). , 2000, The Biological bulletin.

[31]  T. Maruyama,et al.  Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea , 1999 .

[32]  J. Pinnegar,et al.  Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions , 1999 .

[33]  Debra S. Stakes,et al.  Sulfur isotope variability in biogenic pyrite; reflections of heterogeneous bacterial colonization? , 1998 .

[34]  Pierre Henry,et al.  Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism , 1997 .

[35]  D. Prieur,et al.  Phylogenetic characterization of sulfur-oxidizing bacterial endosymbionts in three tropical Lucinidae by 16S rDNA sequence analysis , 1996 .

[36]  D. Yellowlees,et al.  Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. , 1996, The Plant cell.

[37]  Hand,et al.  The contribution of nitrate respiration to the energy budget of the symbiont-containing clam Lucinoma aequizonata: a calorimetric study , 1996, The Journal of experimental biology.

[38]  C. Cavanaugh,et al.  Expression of form I and form II Rubisco in chemoautotrophic symbioses: Implications for the interpretation of stable carbon isotope values , 1995 .

[39]  A. Hawkins,et al.  Nutrition of the giant clam Tridacna gigas (L.). II. Relative contributions of filter-feeding and the ammonium-nitrogen acquired and recycled by symbiotic alga towards total nitrogen requirements for tissue growth and metabolism , 1995 .

[40]  L. Frenkiel,et al.  Gill ultrastructure and symbiotic bacteria in Codakia orbicularis (Bivalvia, Lucinidae) , 1995, Zoomorphology.

[41]  J. Childress,et al.  Assimilation of Inorganic Nitrogen by Marine Invertebrates and Their Chemoautotrophic and Methanotrophic Symbionts , 1994, Applied and environmental microbiology.

[42]  W. Fitt,et al.  The Zooxanthellal Tubular System in the Giant Clam. , 1992, The Biological bulletin.

[43]  David L. Kirchman,et al.  Isotope fractionation associated with ammonium uptake by a marine bacterium , 1992 .

[44]  J. Brooks,et al.  Stable isotope partitioning in seep and vent organisms: chemical and ecological significance , 1992 .

[45]  R. Vetter,et al.  Oxygen- and Nitrogen-Dependent Sulfur Metabolism in the Thiotrophic Clam Solemya reidi. , 1992, The Biological bulletin.

[46]  D. Klumpp,et al.  Nutrition of the giant clam Tridacna gigas (L.) I. Contribution of filter feeding and photosynthates to respiration and growth , 1992 .

[47]  K. Macleod,et al.  Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts , 1992 .

[48]  Douglas S. Jones,et al.  Photosymbiosis in Clinocardium nuttalli; implications for tests of photosymbiosis in fossil molluscs , 1992 .

[49]  N. Conway,et al.  Incorporation and utilization of bacterial lipids in theSolemya velum symbiosis , 1991 .

[50]  A. Günther Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico) , 1990 .

[51]  E. Grossman,et al.  Stable isotope profiles of Tridacna maxima as environmental indicators , 1989 .

[52]  M. Diouris,et al.  Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae) , 1989 .

[53]  D. White,et al.  Phospholipid fatty acid and infra-red spectroscopic analysis of a sulphate-reducing consortium , 1988 .

[54]  Howard J. Spero,et al.  More light on photosymbiosis in fossil mollusks: The case of Mercenaria “tridacnoides” , 1988 .

[55]  A. Mariotti,et al.  Geochemical and biogeochemical observations on the biological communities associated with fluid venting in Nankai Trough and Japan Trench subduction zones , 1987 .

[56]  Douglas S. Jones,et al.  Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima , 1987 .

[57]  J. E. Burris,et al.  Role of glutamine synthetase in ammonia assimilation by symbiotic marine dinoflagellates (zooxanthellae) , 1987 .

[58]  R. Trench,et al.  NOMENCLATURE OF ENDOSYMBIOTIC DINOFLAGELLATES , 1986 .

[59]  Douglas S. Jones,et al.  Life History of Symbiont-Bearing Giant Clams from Stable Isotope Profiles , 1986, Science.

[60]  M. Minagawa,et al.  Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age , 1984 .

[61]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[62]  R. Murray,et al.  Diagenesis of Metals Chemically Complexed to Bacteria: Laboratory Formation of Metal Phosphates, Sulfides, and Organic Condensates in Artificial Sediments , 1983, Applied and environmental microbiology.

[63]  R. Parkes,et al.  The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments , 1983 .

[64]  C. Yonge Functional morphology and evolution in the Tridacnidae (Mollusca, Bivalvia, Cardiacea) , 1981 .

[65]  D. Wethey,et al.  OBSERVATIONS ON THE SYMBIOSIS WITH ZOOXANTHELLAE AMONG THE TRIDACNIDAE (MOLLUSCA, BIVALVIA) , 1981 .

[66]  G. Rau Hydrothermal Vent Clam and Tube Worm 13C/12C: Further Evidence of Nonphotosynthetic Food Sources. , 1981, Science.

[67]  R. Pardy SYMBIOTIC ALGAE AND 14C INCORPORATION IN THE FRESHWATER CLAM, ANODONTA , 1980 .

[68]  S. Weiner,et al.  X‐ray diffraction study of the insoluble organic matrix of mollusk shells , 1980 .

[69]  M. J. Deniro,et al.  Mechanism of carbon isotope fractionation associated with lipid synthesis. , 1977, Science.

[70]  J. D. de Leeuw,et al.  Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branded beta-hydroxy acids in Desulfovibrio desulfuricans , 1977, Journal of bacteriology.

[71]  M. C. Hartman,et al.  Infection of the heart cockle, Clinocardium nuttallii, from Yaquina Bay, Oregon, with an endosymbiotic alga , 1976 .

[72]  J. Philip Palaeoecologie des formations a rudistes du cretace superieur - l'exemple du sud-est de la France , 1972 .

[73]  E. R. Allen,et al.  The Sulfur Cycle , 1972, Science.

[74]  Stjepko Goiubic Distribution, Taxonomy, and Boring Patterns of Marine Endolithic Algae , 1969 .

[75]  P. L. Parker The biogeochemistry of the stable isotopes of carbon in a marine bay , 1964 .

[76]  R. Purchon,et al.  A NOTE ON THE BIOLOGY OF TRIDACNA CROCEA LAM. , 1955 .

[77]  C M Yonge,et al.  MODE OF LIFE, FEEDING, DIGESTION AND SYMBIOSIS WITH ZOOXANTHELLAE IN THE TRIDACNIDAE , 1936 .

[78]  Nancy Knowlton,et al.  Climate change impacts on marine ecosystems. , 2012, Annual review of marine science.

[79]  P. Tyler,et al.  Chemosynthetically-Driven Ecosystems in the Deep Sea , 2010 .

[80]  S. Duperron,et al.  Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. , 2007, FEMS microbiology ecology.

[81]  J. Primavera,et al.  Gill structure, anatomy and habitat of Anodontia edentula: Evidence of endosymbiosis , 2001 .

[82]  Fractionation of the Isotopes of Carbon and Hydrogen in Biosynthetic Processes , 2001 .

[83]  C. Cavanaugh,et al.  CO2 Fixation in Chemoautotroph-Invertebrate Symbioses: Expression of Form I and Form II RubisCO , 1996 .

[84]  L. Pratt,et al.  Molecular and isotopic compositions of lipids in bivalve shells: A new prospect for molecular paleontology , 1995 .

[85]  B. Fry,et al.  Microorganisms as food resources at deep-sea hydrothermal vents , 1994 .

[86]  B. Spiro,et al.  Sulphide 'mining' by lucinid bivalve molluscs: demonstrated by stable sulphur isotope measurements and experimental models , 1994 .

[87]  J. Sargent,et al.  Total lipid content, and lipid and fatty acid composition of the deep-water prawn Pandulus borealis from Balsfjord, northern Norway: growth and feeding relationships , 1993 .

[88]  Charles R. Fisher,et al.  The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses , 1992 .

[89]  H. Janssen Philippine bivalves and microorganisms past research, present progress and a perspective for agriculture , 1992 .

[90]  A. Seilacher Aberrations in bivalve evolution related to photo‐ and chemosymbiosis , 1990 .

[91]  P. W. Signor,et al.  How a clam builds windows: shell microstructure in Corculum (Bivalvia: Cardiidae) , 1986 .

[92]  G. Rau 13C/12C and 15N/14N in hydrothermal vent organisms: ecological and biogeochemical implications , 1985 .

[93]  Siro Kawaguti,et al.  The Third Record of Association between Bivalve Mollusks and Zooxanthellae , 1983 .

[94]  Richard Cowen,et al.  Algal Symbiosis and Its Recognition in the Fossil Record , 1983 .

[95]  Donald W. Boyd,et al.  Form, function, and evolution , 1969 .

[96]  C. Jeuniaux Chitine et chitinolyse , 1964 .

[97]  Siro Kawaguti,et al.  Observations on the Heart Shell, Corculum. cardissa (L.), and Its Associated Zooxanthellae , 1950 .

[98]  C. Philippart,et al.  � 2003, by the American Society of Limnology and Oceanography, Inc. Climate-related changes in recruitment of the bivalve Macoma balthica , 2022 .