Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions

The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.

[1]  K. T. Law,et al.  Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. , 2012, Physical review letters.

[2]  Takayanagi,et al.  Josephson effect of the superconducting quantum point contact. , 1992, Physical review. B, Condensed matter.

[3]  F. Beltram,et al.  Hot-electron effects in InAs nanowire Josephson junctions , 2011 .

[4]  J. Cuevas,et al.  Magnetic interference patterns and vortices in diffusive SNS junctions. , 2007, Physical review letters.

[5]  Christian Schönenberger,et al.  Hybrid superconductor-quantum dot devices. , 2010, Nature nanotechnology.

[6]  P. Caroff,et al.  Supercurrent and multiple Andreev reflections in an InSb nanowire Josephson junction. , 2012, Nano letters.

[7]  V. Shumeiko,et al.  Quantized conductance and its correlation to the supercurrent in a nanowire connected to superconductors. , 2013, Nano letters.

[8]  J. Pekola,et al.  Origin of hysteresis in a proximity josephson junction. , 2008, Physical review letters.

[9]  Lucia Sorba,et al.  Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods , 2015 .

[10]  J. Cuevas,et al.  Density of states and supercurrent in diffusive SNS junctions: Roles of nonideal interfaces and spin-flip scattering , 2007, 0704.2358.

[11]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[12]  L. Molenkamp,et al.  Induced superconductivity in the quantum spin Hall edge , 2013, Nature Physics.

[13]  L. Sorba,et al.  Pb/InAs nanowire josephson junction with high critical current and magnetic flux focusing. , 2014, Nano letters.

[14]  G. Panaitov,et al.  Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions , 2012, 1205.2289.

[15]  F. Giazotto,et al.  Superconductors as spin sources for spintronics , 2007, 0711.0662.

[16]  J. Alicea,et al.  Approaching a topological phase transition in Majorana nanowires , 2016, 1601.07908.

[17]  M. Vitiello,et al.  Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors , 2012, Nanoscale Research Letters.

[18]  E. Strambini,et al.  Mesoscopic Josephson junctions with switchable current-phase relation , 2014, 1412.0998.

[19]  D. Goldhaber-Gordon,et al.  Unconventional Josephson effect in hybrid superconductor-topological insulator devices. , 2012, Physical review letters.

[20]  David A. Huse,et al.  Griffiths effects and quantum critical points in dirty superconductors without spin-rotation invariance: One-dimensional examples , 2001 .

[21]  Y. Nazarov,et al.  Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires , 2014, 1402.0305.

[22]  M. Governale,et al.  A Josephson quantum electron pump , 2011, 1102.4207.

[23]  L. Molenkamp,et al.  4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions , 2015, Nature Communications.

[24]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[25]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[26]  S. Das Sarma,et al.  Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire , 2012 .

[27]  Vincenzo Grillo,et al.  InAs/InSb nanowire heterostructures grown by chemical beam epitaxy , 2009, Nanotechnology.

[28]  D. Loss,et al.  Composite Majorana fermion wave functions in nanowires , 2012, 1205.7054.

[29]  F. Beltram,et al.  Hybrid InAs nanowire–vanadium proximity SQUID , 2010, Nanotechnology.

[30]  G. Biasiol,et al.  Electrostatic tailoring of magnetic interference in quantum point contact ballistic Josephson junctions , 2013, 1302.0737.

[31]  W. Wegscheider,et al.  Edge-mode superconductivity in a two-dimensional topological insulator. , 2014, Nature nanotechnology.

[32]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[33]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[34]  G. Biasiol,et al.  A ballistic quantum ring Josephson interferometer , 2012, Nanotechnology.

[35]  N. Chtchelkatchev,et al.  Josephson effect in SFXSF junctions , 2002, cond-mat/0205316.

[36]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[37]  P. Goldbart,et al.  Magnetic-field enhancement of superconductivity in ultranarrow wires. , 2006, Physical review letters.

[38]  K B Efetov,et al.  Enhancement of the Josephson current by an exchange field in superconductor-ferromagnet structures. , 2001, Physical review letters.

[39]  Fan Wu,et al.  Charge transport in InAs nanowire Josephson junctions , 2013, 1311.1745.

[40]  InAs nanowire hot-electron Josephson transistor , 2010, 1003.2140.

[41]  L. Molenkamp,et al.  Nonsinusoidal current-phase relationship in Josephson junctions from the 3D topological insulator HgTe. , 2014, Physical review letters.

[42]  R. Aguado,et al.  Mapping the topological phase diagram of multiband semiconductors with supercurrents. , 2013, Physical review letters.

[43]  C. Beenakker,et al.  Universal limit of critical-current fluctuations in mesoscopic Josephson junctions. , 1991, Physical review letters.

[44]  Hongqi Xu,et al.  Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device , 2014, Scientific Reports.

[45]  Jacek K. Furdyna,et al.  The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles , 2012, Nature Physics.