Low voltage blue-phase liquid crystal displays

A protrusion electrode structure is proposed to dramatically lower the operation voltage of the emerging blue-phase liquid crystal displays (BP-LCDs). Simulation results indicate that the generated horizontal electric field is not only strong but also penetrates deeply into the bulk LC layer. As a result, a low voltage (∼10 Vrms) and reasonably high transmittance (∼70%) BP-LCD can be achieved. This approach enables the BP-LCDs to be addressed by amorphous silicon thin-film transistors (TFTs). Widespread application of TFT BP-LCDs is foreseeable.

[1]  HyungKi Hong,et al.  In-Plane Switching Technology for Liquid Crystal Display Television , 2007, Journal of Display Technology.

[2]  Shin‐Tson Wu,et al.  Viewing angle controllable displays with a blue-phase liquid crystal cell. , 2010, Optics express.

[3]  Jin-Oh Kwag,et al.  18.3: Implementation of a New Wide Viewing Angle Mode for TFT-LCDs , 2000 .

[4]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[5]  Richard A. Soref,et al.  Field effects in nematic liquid crystals obtained with interdigital electrodes , 1974 .

[6]  Shin-Tson Wu,et al.  Extended Kerr effect of polymer-stabilized blue-phase liquid crystals , 2010 .

[7]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[8]  Katsumi Kondo,et al.  Electro‐optical characteristics and switching behavior of the in‐plane switching mode , 1995 .

[9]  Shin-Tson Wu,et al.  Fundamentals of Liquid Crystal Devices , 2006 .

[10]  Shin‐Tson Wu,et al.  Electro-optics of polymer-stabilized blue phase liquid crystal displays , 2009 .

[11]  Sung Min Kim,et al.  Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen , 2007 .

[12]  Toshihiko Nagamura,et al.  Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range , 2005 .

[13]  Paul R. Gerber,et al.  Electro-Optical Effects of a Small-Pitch Blue-Phase System , 1985 .

[14]  Shin-Tson Wu,et al.  Modeling of Blue Phase Liquid Crystal Displays , 2009, Journal of Display Technology.

[15]  H. Coles,et al.  Dynamic properties of blue-phase mixtures , 1989 .

[16]  C.T. Liu Revolution of the TFT LCD Technology , 2007, Journal of Display Technology.

[17]  James P. Sethna,et al.  Theory of the blue phase of cholesteric liquid crystals. , 1981 .

[18]  Takahiro Sasaki,et al.  41.1: A Super‐High Image Quality Multi‐Domain Vertical Alignment LCD by New Rubbing‐Less Technology , 1998 .

[19]  Shin-ichi Yamamoto,et al.  39.1: Invited Paper: Optically Isotropic Nano‐Structured Liquid Crystal Composites for Display Applications , 2009 .

[20]  Shin-Tson Wu,et al.  Rotational viscosity of nematic liquid crystals A critical examination of existing models , 1990 .

[21]  S.-T. Wu,et al.  Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays , 2006, Journal of Display Technology.

[22]  Shin-Tson Wu,et al.  Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight. , 2006, Optics express.

[23]  Shin-Tson Wu,et al.  Low Voltage Blue-Phase LCDs With Double-Penetrating Fringe Fields , 2010, Journal of Display Technology.

[24]  Wu,et al.  Birefringence dispersions of liquid crystals. , 1986, Physical review. A, General physics.

[25]  Shin-Tson Wu,et al.  Reducing the color shift of a multidomain vertical alignment liquid crystal display using dual threshold voltages , 2008 .

[26]  T. Nagamura,et al.  Large Electro‐optic Kerr Effect in Polymer‐Stabilized Liquid‐Crystalline Blue Phases , 2005 .

[27]  Yan Li,et al.  Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes , 2010 .